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Abstract

In this paper, I derive novel indexes of Climate Policy Uncertainty for four
European countries. Exploiting a new dataset of web-scraped newspaper archives
and text-as-data techniques, I explore the role of policy stance underlying aggre-
gate indices of CPU, deriving sub-indexes for uncertainty suggesting increasing
or decreasing future stringency. Building on the Directed Technical Change litera-
ture, I test empirically the relationship between CPU sub-indexes and environmentally-
relevant technologies, in a panel of European firms between 1990 and 2020. I find
a significant relationship between the direction of firms’ technological efforts,
proxied by patents, and that of policy uncertainty. The results suggest that pol-
icy uncertainty is a relevant factor in affecting the direction of technical change,
bearing important implications in terms of both climate and green industrial
policy making.
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1 Introduction
Addressing the climate crisis, and achieving the Paris Agreement targets of contain-
ing average emissions’ increase well below 2°C, requires radical decarbonization of the
world economy. The scale and speed of change necessary for achieving climate targets
entails major coordination efforts, in which the role of governments in steering mar-
ket forces is fundamental. The scale of these efforts, in fact, has been described as
an industrial revolution against a deadline (Schmitz et al., 2013; Lütkenhorst et al.,
2014). The development of carbon-neutral technologies in all sectors of the economy,
from transport to energy production, plays an essential part in the tension between
decarbonization and economic growth (IEA, 2020).

Within the green growth paradigm, the development and production of sustainable
technologies open new economic opportunities, while contributing to decouple growth
from polluting emissions. The costs required for achieving climate targets and stimu-
late green innovation must be met timely, in order to avoid further climate damage.
Green growth represents an opportunity for the economic success of countries and re-
gions, but is also the source of deep tensions. At its core, climate policy aims at pricing
environmental externalities and steering market prices towards making green products
and technologies relatively more convenient than polluting ones (Gugler et al., 2024).
Transitioning away from a fossil-based model of economic growth is met by resistance
of stakeholders of sunset industries. Transitioning away from polluting products and
technologies could result in unjust outcomes, by favoring specific economic players,
income groups, or territories, and creating new forms of climate-related inequalities
(Pegels, 2014; Rodríguez-Pose and Bartalucci, 2023).

In this landscape, the support for climate and green industrial policies critically
depends on the success of the policy mix in delivering a just and effective transition
(Altenburg and Rodrik, 2017). Climate and green industrial policies have taken a cen-
tral role in the academic and public debates during the past decade (Wade, 2014; Cherif
and Hasanov, 2019). Strong government intervention is essential in steering economies
towards a sustainable growth path, and the implications of this necessity are at the
core of the tension between the State and the market (Mazzucato, 2011; Rodrik, 2014).

The crucial role of green innovation in ensuring both emissions reduction and com-
petitiveness is everyday more relevant (Fankhauser et al., 2013; Aghion et al., 2023).
In this sense, directing technical change away from a high-carbon equilibrium towards
a low-carbon one, requires a policy mix able to steer economic incentives for innovation
in a cleaner direction (Acemoglu et al., 2012). The need for strong climate policies has
been stressed for decades, and progress has been made, but their implementation has
been subject to periods of deceleration and doubt. In light of the green-tech race, and
more in general the success of the transition, consensus and clarity around climate and
industrial policy-making are of immense importance (Altenburg and Rodrik, 2017).
Uncertainty in climate policy making has recently been subject to the attention of
scholars, as a potential factor slowing down investments and hindering the transition
(Basaglia et al., 2021).
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As defined by (Baker et al., 2016), Economic Policy Uncertainty (EPU) regards
government actions, regulations, and policies that can influence economic and business
decisions. Climate policy uncertainty (henceforth, CPU) is a specific subset, focus-
ing on the ambiguity surrounding the design, implementation, or future trajectory of
policies aimed at addressing climate change, and achieving the transition. This un-
certainty includes unclear government attitudes towards climate regulations, in terms
of emissions’ targets, carbon pricing mechanisms, or international climate agreements.
CPU could in turn affecting the behavior of economic agents, particularly delaying the
transition to a low-carbon economy.

In this chapter, I contribute to the empirical literature on directed technical change
(DTC), and on the behavior of economic agents facing climate-related uncertainty
(Pindyck, 2021), in different respects. First, I build on the empirical literature on
policy uncertainty started by Baker et al. (2016), and construct new measures of CPU
for France, Germany, Italy and Spain. Exploiting text-as-data techniques and Natural
Language Processing (NLP) I derive novel sub-indexes of CPU, leaning towards in-
creasing or decreasing stringency, in order to map the direction of uncertainty. Second,
I employ semi-supervised machine learning on this data to make this exercise extensi-
ble flexibly to other data sources, and test the relevance of text-as-data techniques in
policy-uncertainty and environmental economics applications (Dugoua et al., 2022).

Adding to previous empirical exercises in the literature, I explicitly adopt a DTC
framework, and study the effects of CPU on the direction of technological change in
firms, studying their low-carbon and polluting patenting activity. I run an empirical
analysis on a panel of around 4800 European firms between 1990 and 2020 and argue
that the direction of policy uncertainty (suggesting increasing or decreasing probability
of future policy stringency) affects the belief revision of firms and in turn the direction
of innovation.

The remainder of the paper is organized as follows. Section 2 presents the relevant
literature context and develops hypotheses. Section 3 presents the data and the em-
pirical strategy. Section 4 presents and interprets the results. Section 5 concludes and
derives policy implications.

2 Literature background

2.1 Policy uncertainty and firms’ behavior

In recent years, economists have stressed the importance of endogenous growth in the
context of climate change. Starting from Acemoglu et al. (2012), numerous studies
have investigated the effects of climate and green industrial policies on the direction
of technological change (Dechezleprêtre et al., 2019). A recent body of empirical ev-
idence has confirmed the relevance of DTC frameworks, showing how innovation in
climate-relevant technologies is sensitive to economic incentives, and how incentives
can be altered by climate policy instruments. (Dechezleprêtre and Hémous, 2022) and
Hémous and Olsen (2021) provide recent reviews of the theoretical and empirical devel-
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opments in this area. Climate policies aimed at affecting the relative price of green and
dirty goods, such as carbon taxes or green R&D subsidies affect innovation outcomes,
directing technical change away from polluting technologies towards low-carbon ones.

In this context, an emerging stream of literature has started investigating the role of
policy uncertainty. The study of firms’ behavior in response to uncertainty has a long
tradition (Bernanke, 1983; McDonald and Siegel, 1986). More recently, novel forms
of climate-related uncertainties are being increasingly recognized as factors affecting
the incentives system faced by economic agents (Pindyck, 2021). In addition, the in-
creased availability of text data, in the past decade, has paved the way for a flourishing
empirical literature on policy uncertainty, building on the initial idea for EPU pro-
posed in Baker et al. (2016). Differently from other measures of market uncertainty,
based often on the volatility of stock prices or on econometric measurement, they de-
veloped measures based the text of newspaper articles. Both this work and a large
number of follow-up studies have shown the negative effects that EPU shocks exert on
the economy during periods of high uncertainty about economic policy actions (for a
comprehensive review about measurements and effects, see Cascaldi-Garcia et al. 2023).

EPU indexes are built on a set of keywords able to capture events in which EPU has
risen historically, making it possible to operationalize indicators of policy uncertainty
across languages and time. Building on similar methodology, an emerging stream of lit-
erature has been developing similar indexes for CPU (Gavriilidis, 2021; Basaglia et al.,
2021; Noailly et al., 2022). Differently from EPU, CPU is built based on a different set
of keywords for climate-related newspaper articles, rather than capturing a broad range
of articles dealing with the economy (the precise construction of the index is detailed in
Section 3). CPU aims at quantifying how uncertain the climate-policymaking process
is, based on a set of nationally relevant newspapers, which might affect the behavior
of economic agents.

At the firm level, the responses to uncertainty in adapting expectations are rooted
in real-options theory (Dixit and Pindyck, 1994). The effect of CPU on firms’ behavior
can be understood through two complementary conceptual mechanisms: real-options
theory and anticipatory behavior. According to real-options theory, uncertainty about
future policies increases the value of delaying investments, particularly when these in-
vestments involve high upfront costs or are irreversible (Bernanke, 1983; Dixit and
Pindyck, 1994). For green technologies, which are often capital-intensive and highly
dependent on regulatory clarity, this mechanism can be particularly relevant. Uncer-
tainty regarding the timing and stringency of measures such as carbon taxes or green
subsidies can lead firms to adopt a wait-and-see approach, postponing investments until
greater clarity emerges. This delay can be further exacerbated by the path-dependency
of green technologies, where early inertia in the development of polluting technologies
can create additional barriers to shifting investment priorities.

On the other hand, anticipatory behavior can drive firms to act preemptively in
response to policy uncertainty, accelerating investments to gain a strategic advantage
in expected future markets. This mechanism may be particularly relevant for green
technologies, given their reliance on government intervention to address market failures
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and their potential for long-term competitiveness in a transitioning economy (Acemoglu
et al., 2012) .

While this analysis is built on the notion that firms merely react to CPU, firms may
also generate uncertainty by influencing government action by lobbying policy-makers
and politicians. While this is highly plausible given the size and relevance of sectors
and firms affected by the transition, this avenue of research is beyond the scope of
this analysis, and will be further discussed as limitation in my empirical setup, being
a source of possible endogeneity. For the scope of the present study, firms are reacting
to increasing CPU by a wait-and-see mechanism or anticipatory behaviors, in terms of
their technological direction.

Empirically, the net effect of concurrent mechanisms, in the context of climate re-
lated risks and uncertainties, is still unclear (Pindyck, 2021). In particular, different
studies find rather heterogeneous results, depending on the employed measures for pol-
icy uncertainty. In the next subsection, I review the extant empirical literature at the
crossroads between policy uncertainty and environmental innovations, and develop the
hypothesis.

2.2 Empirical evidence on uncertainty and green innovation

In Table 1, I review of recent studies linking policy uncertainty and firm outcomes, from
an environmental and green innovation perspective. I consider two different measures
for policy uncertainty. First, I review papers from the literature on EPU, including
only studies dealing with environmentally-related outcomes, namely green investments
and patenting, or greenhouse gases (GHG) emissions. Second, I include exercises em-
ploying CPU as the explanatory variable of interest.
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Table 1: Literature Review: Policy uncertainty and innovation

Paper Sample Uncertainty Countries Outcome Frequency Direction
of effects

Bai et al. (2023) firms, 2011-2020 CPU China Green Patents yearly Positive
Basaglia et al.
(2021)

firms, 1990-2019 CPU US Stock returns,
RD, patenting,
employment

quarterly Negative

Berestycki et al.
(2022)

firms, 1990-2018 CPU 12 OECD
countries

Investments yearly Negative

Bettarelli et al.
(2023)

countries and firms,
1976-2020

EPU 81 coun-
tries

Green patents yearly Negative

Bouri et al. (2022) firms, 2000-2021 CPU US Stock returns
(green vs brown)

monthly Positive

Cui et al. (2023) firms, 2005-2019 EPU China Green Patents yearly Negative
Dorsey (2019) plant, 2002-2011 CAIR (sin-

gle policy)
US Investments and

emissions
yearly Negative

Feng and Ma
(2024)

firms, 2011-2021 PEU (text-
based at
firm level)

China Green Patents yearly Negative

Feng and Zheng
(2022)

countries, 2000-2022 EPU 22 coun-
tries

Renewable En-
ergy patents

yearly Positive

Gavriilidis (2021) US, 2000-2021 CPU US CO2 emissions monthly Negative
Hoang (2022) firms, 2000-2019 CPU US R&D expendi-

tures
quarterly Negative
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Hu et al. (2023) firms, cross-section survey-
based
EnvPU

China Green invest-
ments

yearly Negative

Huang (2023) firms, 1987-2019 CPU US Green Patents yearly Negative
Khalil and Strobel
(2023)

macro and firms,
2000-2019

CPU US Market value,
Investments

quarterly Positive

Kyaw (2022) firms, 2002-2020 EPU US EnvInnovation
score

yearly Positive

Li et al. (2021) provinces, 2000-2017 EPU China Green Patents yearly Negative
Noailly et al. (2022) macro and firms,

1990-2019
EnvPU US Green VC in

startups
quarterly Negative

Peng et al. (2023) provinces, 2000-2017 EPU China Green Patents yearly Positive
Ren et al. (2022a) firms, 2009-2020 CPU China Total Factor

Productivity
yearly Negative

Wang et al. (2023) firms, 2000-2020 CPU US CO2 Emissions
and Green
Patents

yearly Positive

Wang (2022) cities and firms, 2003-
2019

Local CPU
(instru-
mented)

China Green RD,
Patents, Em-
ployment

yearly Negative

Xu and Yang
(2023)

cities, 2005-2016 EPU China Green Patents yearly Positive

Yu and Chen
(2023)

firms, 2007-2020 EPU China Green Patents yearly Negative
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Evidence about the effect of EPU and green innovation is far from conclusive. In
a recent working paper, analyzing a large sample of countries and sectors, Bettarelli
et al. (2023) suggest that an increase in EPU, measuring the general uncertainty about
government’s economic policy, depresses green patenting. Cui et al. (2023) and Niu
et al. (2023) study the effect of EPU on firm-level green patenting in China, also find-
ing a negative relationship. Li et al. (2021), at the level of Chinese provinces, adds
evidence in this direction. Yu and Chen (2023) and Hu et al. (2023) also report a
negative association between EPU and green patenting in China, at the firm level.
On the contrary, in the United States, Kyaw (2022) and Wang et al. (2023) find a
positive effect on measures of green innovation, including investments, patents, and
survey-based eco-innovation measures. Xu and Yang (2023) and Peng et al. (2023)
finds similar results at the provincial level in China. At the country level, Feng and
Zheng (2022) adds to this positive relationship.

EPU is a measure capturing general aspects of economic policy, including monetary
policy shocks, terrorist attacks, trade shocks or electoral uncertainty. Environmentally-
related technologies might be more sensitive to a general uncertainty shocks compared
to other technologies (Bettarelli et al., 2023), because of the different nature of green
technologies in terms of risk, complexity, or their need for government support.

Green technologies might be particularly sensitive to policy uncertainty due to
their unique characteristics, entailing a higher complexity in their recombinant proper-
ties (Barbieri et al., 2020; Fusillo, 2023). Unlike other technologies, green innovations
address externalities that markets fail to price adequately, requiring consistent govern-
ment support through carbon pricing, renewable energy incentives, and green R&D
subsidies (Acemoglu et al., 2012). These technologies also involve higher financial and
technological risks. Long development cycles and reliance on novel, cross-disciplinary
knowledge create significant uncertainty for firms, especially when policy environments
are unpredictable. Delays or reversals in key regulations, such as carbon taxes, can
therefore devalue investments. Uncertainty could further amplify their exposure to
fragmented or inconsistent international policies, disrupting innovation ecosystems and
the spatial diffusion of these technologies (Losacker et al., 2023).

Green investments and technologies are therefore arguably more sensitive to un-
certainty, and in particular to that specifically bound to climate and environmental
policies. An emerging stream of empirical studies, on which this analysis builds, quan-
tifying this type of uncertainty based on the methodology put forward by (Baker et al.,
2016). Gavriilidis (2021) measured CPU, based on a sample of nationally-relevant
newspapers in the United States, finding a negative relationship with emissions’ re-
duction in a sample of firms. Many studies relate to the effect of CPU rises in the
United States, employing the index constructed by Gavriilidis (2021), and observing
its relationship with firm level outcomes. Most of these studies focus on the effect of
rising CPU in US and Chinese firms. Since then, a number of different exercises have
developed alternative CPU indexes.

Noailly et al. (2022) develops a similar index for environmental policy uncertainty
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(EnvPU) employing text-as-data techniques, and testing its effect on venture capital
funding for US startups. Using quarterly data, they find that an increase in Environ-
mental Policy Uncertainty is associated to lower amounts of capital raised by clean-tech
startups. Other recent exercises have built CPU indexes for a larger number of coun-
tries. Basaglia et al. (2021) and Berestycki et al. (2022) are the most connected to this
paper, measuring and studying the impact of CPU respectively in the United States
(Basaglia et al., 2021), and on OECD countries, exploiting a global firm-level datasets
(Berestycki et al., 2022). Both studies find a reduction in investments and firm level
performances, and Basaglia et al. (2021) also explicitly measures the direction of un-
certainty that underlies variation in CPU in English-speaking countries. They use a
keywords-based approach to distinguish newspaper articles pointing towards more or
less stringent regulation. By interacting emissions intensities as a form of exposure to
climate policies, they show how US-firms are more sensitive to variation in CPU that is
pointing towards more rigid regulation. While they test results for R&D expenditures,
share price volatility, and other outcomes in the US, they do not look explicitly into
the direction of effects in terms of green-vs-dirty patenting.

Again for the context of the United States, Wang (2022) measures CPU differently,
exploiting the volatility in votes regarding climate legislation, finding that firms adopt
an anticipatory behavior with respect to innovation and adoption of climate technolo-
gies. Adding to the US evidence, Hoang (2022) distinguishes between low and high-
emitting firms, finding a negative effect for the latter, suggesting that heavy-emitting
firms might be adopting a wait-and-see investment strategy. Two studies explicitly
look at the relative performance of green and dirty outcomes in response to climate
policies. At the macro level, Khalil and Strobel (2023) employ both a general equilib-
rium models, and granular firm level data for the US. They find evidence of capital
reallocation towards cleaner assets with respect to more polluting ones, while lowering
investments in carbon intensive industries and increasing it in "greener" firms. These
findings are in line with Bouri et al. (2022), finding a positive role for US-CPU on the
relative performance of green energy stocks vis-à-vis brown counterparts. In a study
precedent to the empirical literature based on newspaper data, Dorsey (2019) exploits
a quasi-experimental framework relating to a single climate policy measure. He finds
that firms exposed to a higher level of CPU reduced investments and experience a lower
reduction in emissions.

Outside of the US, a number of empirical studies have investigated the CPU and
firms’ performance in China. Ren et al. (2022b) find a negative effect of US-CPU on
total factor productivity in a sample of Chinese firms, channeled through a reduction
in R&D expenditures and cash flows, with results varying according to the institutional
ownership of firms. Bai et al. (2023) test the US-based index developed in Gavriilidis
(2021) on a sample of listed Chinese firms, finding a positive relationship with green
patenting. Similarly, Ren et al. (2022a) find a strong non-linear correlation between
CPU and investments, negative in polluting industries and positive for green-related
investments. Differently from other studies based on newspaper data, Hu et al. (2023)
uses survey-based measures of policy uncertainty (policy content and policy enforce-
ment), at the local level, and find a negative relationship with green patenting in
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Chinese firms. Other papers focus instead on Chinese CPU. Recently, Ma et al. (2023)
employed deep learning techniques to build indexes with geographical variation of CPU
in China. Feng and Ma (2024) also use text analysis techniques on company reports in
order to build a measure of environmental uncertainty perceived by the firms, finding
that it might hinder green innovation. At the city-level, Wang et al. (2023) finds that a
reduction in Chinese green R&D, patents and employment, due to uncertainty specif-
ically constructed around the allocation system of subsidies allocated by the central
government.

In summary, while in the case of the EPU index, capturing a more general aspect of
policy uncertainty related to economic policies, uncertainty can be expected to be detri-
mental to any innovation process (Basaglia et al., 2021), depressing general investment
activity, the empirical evidence seems to show more mixed results. However, in the case
of CPU, the same effect cannot be expected a-priori, as the underlying signals in the
climate-policymaking process could be differently affecting environmentally-opposing
technologies.

2.3 CPU’s direction and technological change

A number of gaps emerge from reviewing the literature on EPU and CPU’s effects.
First, in terms of technological dynamics, evidence beyond general investments is still
scant. Studies focusing on green patenting do not explicitly adopt a directed tech-
nical change perspective, controlling for the strong path-dependencies characterizing
environmentally-sensitive technologies (Acemoglu et al., 2012; Aghion et al., 2016).

If CPU is differently affecting green and brown investments (or sectors) it is plausi-
ble to think that climate-sensitive technologies (green or dirty) would also be affected
in different ways. Khalil and Strobel (2023), from a macro perspective in a general
equilibrium framework, find evidence for a mechanism of capital reallocation, with
investments shifting from brown towards cleaner sectors.

Bouri et al. (2022) add evidence on the positive effect of CPU on the relative per-
formance of green vis-à-vis brown financial stocks. I add to this evidence focusing on
technological dynamics. CPU could affect firms’ behaviors in terms of future costs
and values of the technologies. In an environmentally-positive direction, CPU could
rise, for example due to discussion about the implementation of a carbon tax. This
would directly affect the (expected) cost of capital for polluting technologies (Khalil
and Strobel, 2023), and indirectly the future value of clean-tech alternatives, causing
a shift in investments efforts from dirty technologies to green technologies.

From this perspective, policy direction within uncertainty indexes becomes cen-
tral in the expectation-revision of firms, driving investments towards two alternative
technologies. As discussed in depth in the next section, CPU indices are built on a
set of environmental, policy, and uncertainty keywords. They capture both directions
of the climate policy-making process, aggregating both milestones and setbacks. As
mentioned, this aspects could be crucial in terms of firms’ expectations and techno-
logical trajectories. With the exception of Basaglia et al. (2021) and Berestycki et al.
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(2022), most of these studies do not unpack CPU indices, and consider aggregate CPU.
Building on their work, I add nuance in terms of the direction of policy-uncertainty.
If policy uncertainty points towards a more stringent environmental regulation, firms
might be inclined to accelerate innovation in terms of environmental technologies, and
divest from fossil-based technologies. A symmetric behavior could be expected in
terms of polluting technologies. If CPU increases are driven by setbacks in the climate
policy-making process, firms could continue, or accelerate, investments into polluting
technologies. Therefore, rather than its aggregate level, a driving factor for innovation
could be the underlying variation in "good" or "bad" news for the environment, with
uncertainty indicating a higher probability of future regulation that could affect both
the costs and returns from alternative technologies.

An increase in positive policy uncertainty would enter the production function of
profit-maximizing agents as a (potential) extra cost for the production of environmentally-
damaging technologies. A decrease in the probability of a carbon tax, for example,
could represent a (relatively) higher expected cost for the development of green tech-
nologies vis-à-vis polluting ones.

Hence, uncertainty caused by setbacks in climate policy-making, could cause firms
to continue investing in fossil-based technologies. Furthermore, given the strong path-
dependency (Aghion et al., 2016), an increase (or a non-decrease) in future value of
polluting technologies could be detrimental for development of low-carbon alternative,
and incentivize agents to continue developing polluting technologies. In an economic
equilibrium which is already favoring polluting technologies, uncertainty could therefore
be a significant factor in steering change towards a cleaner path (Acemoglu et al.,
2012). By the same logic, an increase in the probability of green subsidies, could
decrease the expected costs of firms in developing green technologies with respect to
fossil-based ones, therefore incentivizing the former and discouraging the latter. In line
with the evidence on green industrial policy (Pegels, 2014), clarity and commitment of
legislators around policies is crucial in this sense, as CPU could be an underlying factor
altering expectations and investments into alternative technologies. In this chapter, I
hypothesize, that different signals underlying CPU matter for the direction of technical
change:

• Climate Policy Uncertainty affects the direction of technological change in firms,
depending on the underlying changes in the probability of a more stringent envi-
ronmental regulation.

To the best of my knowledge, no study has yet tested the relationship between (sub)
indices of CPU and DTC by considering both low and high-carbon technologies. Fur-
thermore, many of the cited studies using green patents as an outcome variable do not
explicitly account for the path-dependency in climate-sensitive technologies, adopting
a framework of directed technical change.

The motivation for this study, therefore, stems from the necessity to understand
how support for green technologies demands stable, harmonized, and long-term pol-
icy frameworks. Without this consistency, the high risks and systemic requirements
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of green technologies will continue to limit innovation and delay the transition to a
sustainable economy. This is particularly relevant in the context of the unpriced exter-
nalities and path-dependencies emerging when considering fossil technologies alongside
green ones.

I add another two contributions with respect to the extant literature. First, I bring
evidence for the European context, while most of the studies reviewed bring forward
evidence regarding the US and China. Second, I contribute to the emerging literature
applying text-as-data techniques in environmental economics and policy (Dugoua et al.,
2022), adopting a novel approach to measure the policy stance of news articles.

3 Empirical Framework

3.1 Data

3.1.1 Newspapers’ archives and CPU

In order to build European indices of CPU, I collect millions of full text articles by
means of web scraping. Web scraping automates the collection of the content of web
pages. I built scrapers for several newspapers archives across my sample countries
(Germany, France, Italy and Spain). I focus on multiple archives for each country, as
common in the policy uncertainty literature to smooth effects due to the structure of
a single outlet.

I collect nationally-relevant archives, although the selection of sources by each coun-
try was limited by the availability of digitized news archives and the feasibility of the
scraping process. I target outlets with different political leaning, in order to balance
reporting biases, which is important for the reliability of this measures, although nu-
merous normalization steps are performed in line with the literature. The selection of
newspapers for this paper largely resembles that of similar exercises in the literature
(Basaglia et al., 2021).
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Table 2: Database of newspaper archives

Country Archive Articles

Germany Der Spiegel 307,103
Die Zeit 220,497

France Figaro 1,773,778
Le Monde 1,491,681

Italy Il Foglio 53,541
La Stampa 5,813,893
La Repubblica 4,528,482
Il Sole 24 Ore 149,839

Spain El Mundo 421,725
El Pais 2,490,156

Total 17,250,695

With the exception of Germany, for which I focus on the weekly outlets Der Spiegel
and Die Zeit, all remaining news sources detailed in Table 2 have a daily frequency. For
France, I collect data for Le Monde and Figaro. In Italy for La Stampa, La Repubblica,
Il Foglio and il Sole 24 Ore. For Spain, I collect data on El Pais and El Mundo news-
paper archives. The resulting dataset allows me to exploit around 17 million full-text
newspaper articles, spanning the period 1990-2020.

The data I collect via web scraping include the date on which the article was pub-
lished, its title, and the body of text. No reliable information about the relevance of
the article within that day’s newspaper (or within the website) was available. I clean
the collected data from duplicates (based on the webpage’s URL, its unique identifier).
Furthermore I remove near-duplicate texts belonging to different URLs, often resulting
from the process of digitization of newspaper scans for articles belonging to the physi-
cal editions.

I do not distinguish, in this database, between digitized articles which originally
appeared in the paper version, and digitally native articles that gained importance
since the early 2000s. While this distinction could help understand the structure of
newspapers archives, for most news sources it is not possible to identify the origin
of the news article. Thus, I consider the archives available online as a single entity,
blending digital and physical news. A more detailed exploration of newspaper data,
or a structured digitization of raw scans1 could have relevant implications for policy
uncertainty indicators, but is beyond the scope of this paper. The span and richness of
the dataset collected, allows me to build CPU indicators, for four European countries,
and a longer time span than the one considered in previous exercises.

Following the methodology proposed by Baker et al. (2016) and subsequent work,
1For a recent example see Dell et al. (2024)
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I match newspaper articles employing three sets of keywords, and consider an article
expressing CPU if it matches all three sets. The first set contains climate-related words
(e.g. climate, environment, CO2), for each language. The second set of keywords, in-
stead, matches articles referring to policy issues (e.g. government, policy), including
policy-specific terms where relevant (for example ETS - Emissions Trading System).
I build on, and expand, the sets of climate and policy keywords adopted in previous
exercises (Gavriilidis, 2021; Basaglia et al., 2021; Berestycki et al., 2022).

The most important difference, compared to the extant literature, is in the set of
keywords expressing uncertainty. The majority of exercises in climate policy uncer-
tainty only match articles based on the keywords "uncertain" or "uncertainty". This
selection of keywords has been subject to criticism. Tobback et al. (2018), in the case
of EPU, employs a wider set of keywords more generally expressing uncertainty (e.g.
doubt, maybe, perhaps). They borrow from the concept of modality in linguistics:
modality relates to different ways of expressing degrees of doubts and certainties. Tob-
back et al. (2018) show that this approach is preferable to simple matches of the words
"uncertain" and "uncertainty".

Adapting from this work, I compile a similar list of keywords representing uncer-
tainty. Employing a larger set of keywords helps minimizing false negatives from the
sample of articles, by matching a larger number of articles compared to the more restric-
tive approach. Given this much larger set includes very common keywords, I minimize
false positives by only considering articles with a number of modality-expressing words
in the top 15th percentile, replicating the approach proposed by Tobback et al. (2018).
I match and calculate percentiles separately for each newspaper archive.

After identifying articles matching the three sets of keywords, I derive monthly time
series, for each newspaper, dividing the monthly count of CPU articles by the total
amount of articles. In turn, following standard practice in this literature, I normalize
the time series by standard deviation, and multiply it for their mean. This normal-
ization helps to remove newspaper-specific factors, due for example to the structure of
the newspaper archive.2 I take averages between newspapers (in the overlapping peri-
ods) and multiply the series by 100, making my measures comparable to other policy
uncertainty time series.3

2I calculate standard deviations and means based on periods of consistent number of articles in
the archives. I follow Baker et al. (2016), for each newspaper in common in the sample, in defining
breaking periods for calculating standard deviations. I also calculate different standard deviations in
periods where the total number of articles in the archive shows structural breaks. This might indicate
a change in the format of the outlet or in the total amount of digitized news, and could add noise to
the measurement.

3Several series from different exercises are updated and available at: https://policyuncertainty.com
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(a) Germany (b) France

(c) Italy (d) Spain

Figure 1: Policy uncertainty indexes for sample countries

15



In Figure 1, I plot these results for the four countries. In blue, I represent the
(yearly and quarterly) averages for the CPU index built with the procedure illustrated
above. I compare it with a similar index developed by the OECD (Berestycki et al.,
2022), as well and the EPU series available from Baker et al. (2016). While it correlates
quite highly, in yearly aggregation, with the OECD’s CPU index, there are notable dif-
ferences, most likely due to the different methodologies in keywords matching, and a
different selection of newspaper archives. Importantly, the CPU index differs from the
Economic Policy Uncertainty.

Interestingly, all indices seem to be spiking around 1992-1993 (years of the discus-
sions around the Kyoto Protocol). Also, spikes in the index correspond to the passing
of climate legislation in 2007-2008, when during France’s EU presidency, the "Climate
and Energy Package" was discussed and adopted, fixing climate targets for 2020. In
Germany, the index spikes around 2011, during the discussions on Energiewende, the
comprehensive climate-policy agenda for the energy transition, featuring a 60% Green-
house Gases (GHG) reduction before mid-century. For France, in the early 2000s, some
spikes relate to the Climate Act (2001), as well as to the 2003 heatwave (peaking also
in Italy and Spain).

In Italy, the index first spikes in the middle of the 1990s, at the beginning of the
debate on energy market liberalization, began with the 1996 EU directive, implemented
in Italy with the 1999 Bersani Law. Another strong rise happens in Italy, in the early
2000s, during the implementation of the reforms and the privatization of energy mar-
kets. Another peak in 2011 refers to peaks in solar panel subsidies.

In more recent years, following 2017, CPU seems to be rising across all four coun-
tries. The rising trend starting from 2016, could be due to country-specific factors (the
Gilet Jeunes protests following a fuel-tax rise in France) or global discussions. As men-
tioned, in aggregate, all these indices are summing up different types of events. Both
President Trump’s decision to exit the Paris Agreement (2017), and the Government’s
responses to the Climate Strikes began by Gretha Thunberg (2018), or the passing of
environmental protection laws could be contributing to the rise of the index. 4

As noted in Basaglia et al. (2021), while one could expect that a rise in general
EPU to be slowing down firms’ investments and in general economic activity, and even
in green patenting (see Bettarelli et al. 2023 among others), it is not necessarily the
same with CPU. As mentioned, the direction of CPU seems particularly relevant for
the direction of innovation.

CPU might be pointing in two different directions: at a strengthening or a weak-
ening of future climate stringency, for example suggesting further implementation,
or a slowdown in the policymaking process. Previous attempts (Berestycki et al.,

4In addition, some news articles refer to specific place-based policies (oil leakages, or polluting
plants) which might not necessarily have national relevance. The distinction between local or na-
tionally relevant events is an interesting avenue for further research, but beyond the scope of this
paper.
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2022; Basaglia et al., 2021) have mapped the direction of CPU, creating sub-indexes
for CPU+ and CPU- (increasing or hindering climate policies) for English-speaking
countries, based on sets of keywords capturing the direction of uncertainty. Previous
measurement exercises in policy uncertainty have employed human labellers for the
validation of these indexes, in particular to filter out false positives. I take a different
approach, exploiting full-text data. Recent literature has shown the potential of Large
Language Models (LLMs) for accurate annotation of textual data, even over-performing
crowd labeling (Gilardi et al., 2023). LLMs, in fact, are opening the possibility to lower
dramatically the cost of labeling while still achieving human-level accuracy on a variety
of different tasks (for a recent review and application, see Wang et al. 2024).

Building on this recent computational social science literature, I prompt the OpenAI
API for labeling the universe of CPU news. I make use of the most recent ChatGPT-4o
model.5 I ask three questions during the labeling process. The first serves in filter-
ing out further false positives resulting from the keywords matching: "Is this news
article about climate policy issues?". The second two questions are asked to collect
information about the policy stance of news articles, and build indicators of positive
or negative CPU. The first question is "Does this piece of news imply a strengthening
or weakening of climate policy?", and the second "Are the consequences of this news
positive or negative for the environment?". The first question is forced as a binary
answer, while I leave the possibility, for the latter two questions, to be answered with
negative, positive or neutral labels. I perform validation and experimentation of the
results of the prompting on a random sample of CPU articles, in similar fashion to the
procedure explained in Berestycki et al. (2022) for keywords selection.

5At the time of writing, ChatGPT-4o is the largest LLM model available by number of parameters,
estimated at around 1.5 trillion.
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(c) Italy (d) Spain

Figure 2: Policy uncertainty and policy stance indexes for sample countries
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I select as CPUp (CPU plus), articles flagged as true positives during the labeling
procedures, and for which any of the two second answers reflect a strengthening of
climate policies. Similarly, I flag CPUm (CPU minus), or articles pointing towards a
weakening of climate policies or with negative consequences for the environment. Based
on this strategy, I derive novel time series, for the four European countries. Rather
than dividing the number of articles by the total monthly number of articles in the
archive, I divide CPUp and CPUm number of articles by the total number of CPU
articles, in order for the series to reflect the relative importance of CPUp or CPUm
rather than a general increase of CPU. In Figure 2 I plot the time series for CPUm
and CPUp, in quarterly moving averages, showing significant variation both over time
and across countries.

There are several advantages and disadvantages to the use of LLM technologies for
the labeling of articles. Compared to keywords, the labeling process is more of a black-
box, while the former is fully reproducible. However, the selection of keywords can be
subject to biases and discretionary selections. The multilingual capabilities of LLMs,
render this approach well-suited for this dataset, which features four non-English lan-
guages. In addition, this flexibility extends in time, mitigating the possible recency
bias. Journalism and the use of language changed throughout time, and an approach
based solely on frequency might be biased towards more recent policy discussions. Fi-
nally, the complexity of syntax-aware methods is particularly important in terms of
mapping policy stance. While keyword-dictionaries are based on the simple occurrence
of words within documents, LLM architectures are syntax-aware, and better able to
capture false positives, handling common issues such as negation.6

In the Appendix, I provide a sample of articles’ titles matched as CPUp and CPUm.
Interestingly, while belonging to the domain of climate issues, it is clear that other com-
ponents are still at play, which might be affecting firms’ behaviors differently. Many
articles are correctly captured under the correct category: President Bush’s government
agenda for liberalization, opinion pieces on the risks of environmentalism (CPUm) or
policy announcements about an increase in kerosene tax (CPUp). Other news are of
local nature (articles about local smog levels or waste management). In this sense, a
promising avenue for further research on the measurement and validation of policy un-
certainty measures, could be mixing LLM-labeling methods with unsupervised learning
to unpack the universe of news into topics, as proposed in the case of EPU by Larsen
(2021).

A number of issues remain open with this approach, and will be further discussed
in the limitations section. First, while the results seem promising, false positives and
noise still affect in the measurement. A more formal validation of the sub-indexes and
the labeling performance remains necessary. The performance of LLMs in compari-
son with human judgment, in social science applications, requires validation, which
is not currently implemented for the sake of this analysis, given the need for human-
annotated datasets (Pangakis et al., 2023; Törnberg, 2024). In particular, the prompts

6For example, the sentence "innovation subsidies will not slow down the climate transition", would
be captured by the terms "slow down" in a dictionary-based approach.
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I have created to label the news could be further refined by formalizing a validation
method for LLM labeling, given a rather cognitively complex task. In future work, I
plan on formalizing and validating the prompt form that more accurately can capture
the direction of CPU, limiting its subjectivity and increasing accuracy (Juroš et al.,
2024).

Nevertheless, this approach seems particularly promising for social sciences, given
the large amount of news-data sources now employed in economics, and its potential
to develop teacher-student architectures in machine learning applications. In this ar-
chitectures, the LLM-generated labels are used as training inputs for training smaller
text-models (Pangakis and Wolken, 2024). I apply this architecture to my dataset and
test the reproducibility of artificially generated labels with smaller text models. I dis-
cuss its potential merits in the case of CPU indices, and provide benchmark evaluation
metrics in the Appendix.

Finally, in order to derive a set of robustness indicators, I isolate events (peaks)
in both of the CPU series. I build a peak detection algorithm based on the rolling
mean of the monthly time series. This algorithm detects peaks based on the deviation
of future data points from a rolling mean of the series. I run the peak detection
based a six-months moving average, built for each time series, with a threshold of
two standard deviations. Thus, a peak is detected if the new data-points exceed two
standard deviations from the rolling mean calculated on the past data points. For the
implementation of the algorithm I follow the approached proposed in Brakel (2014),
where new peaks detected influence the series. In the Appendix Figure 3 I show an
example of the peak detection process. All indicators are included in the econometric
analysis as yearly moving averages.

3.1.2 Firms and patents dataset

In line with the literature on the economics of innovation, I make use of patent data to
proxy the technological efforts of firms. The use of patent data as a proxy for innova-
tion has a long tradition. Despite the numerous criticisms, patent databases represent
a valuable source of information for firms’ technological efforts, and have been shown
to map effectively the knowledge generated by firms, regions and countries.

I use the OECD’s REGPAT database (Maraut et al., 2008) for deriving patent-based
indicators. Patents widely vary in quality, and can be filed into different jurisdictions
at different patent offices. In addition, firms can file several patents to protect the
same invention. In order to avoid double-counting patents for the same technology,
and to focus on high-quality patents, I make use of the Triadic Patent Families (TPF)
database in REGPAT. Within triadic patent families, an invention is filed under the
three major patent offices in the world: the European Patent Office (EPO), the United
States Patent and Trademark Office (USPTO) and the Japanese Patent office (JPO).
Making use of REGPAT, I construct a dataset focusing on patent families rather than
single patents, following the approach in Aghion et al. (2016). Patenting inventions is a
costly process for firms, and more valuable innovations with promising market perspec-
tives are filed in all three offices. Hence, in this work I focus on high-quality inventions.
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Patents can be filed under a large number of technological classes, defined un-
der the International Patent Classification (IPC) and under the Cooperative Patent
Classification (CPC). I classify technologies under three categories. In line with the
eco-innovation literature, I consider green patents technologies that have potential for
mitigation or adaptation of climate change. I match patents based on the methodol-
ogy recently proposed in Favot et al. (2023), building on previous work (Ghisetti and
Quatraro, 2017). I match codes at different digits based on the OECD’s ENVTECH
classification (Haščič and Migotto, 2015) and the algorithm proposed by Favot et al.
(2023) on both IPC and CPC codes for patent families. I expand this search by manu-
ally adding codes at higher level from the Y02/Y04S technological classification. The
number of TPFs identified as green technologies represent roughly 9% of total patent
families (in line with the results in Favot et al. 2023). I provide a detailed summary of
the codes employed in Table 13 of the Appendix.7

In turn, I identify "dirty" patents families, matching polluting inventions, linked to
the the emission of greenhouse gases. I consider as dirty patent families for the pro-
duction of fossil-fuel, combustion engines, electricity production from non-renewable
sources, in addition to steam and gas technologies. Again, I adapt previous work from
Aghion et al. (2016); Dechezleprêtre and Sato (2017) for polluting technologies, and
expand it with a recent classification of fossil technological codes provided by the Inter-
national Energy Agency (IEA).8 Table 15 provides a full description of the technologies
considered as dirty. Finally, I create a sub-category of dirty technologies: grey patents.
Grey technologies render combustion processes more efficient, and have potential of
reducing GHG emissions, while still being polluting technologies. Once again, I follow
previous work (Dechezleprêtre and Sato, 2017) and provide a breakdown of grey tech-
nological codes in Table 14.

I aggregate total, green, dirty and grey patent families as counts by applicant. Fol-
lowing Aghion et al. (2016) I only consider applicants with consecutive observations.
Using information on the name and country of applicants in REGPAT’s TPF database,
I match firms in the ORBIS (Bureau van Dijk) database, exploiting the name-search
engine provided by ORBIS, for the applicants having at least one green or dirty patent
over the sample period, and with their address in Germany, France, Spain or Italy.
Using balance sheet information from ORBIS, I map firms to their main sectors, and
collect information on the year of foundation, and the first available balance sheet. I
build an unbalanced panel dataset for firms in the four countries. I consider the be-
ginning of the panel the year of foundation where available, and if not the first year of
available balance-sheet information. Where the information is not available, I consider
as a starting year the year prior to that of the first patent application recorded in

7Where a description of sub-codes’ purpose is provided, I match codes at a lower depth than the
4-digits macro group indicated, only considering a subset of those technologies. For a more detailed
description of the codes employed, please refer to Favot et al. (2023); Haščič and Migotto (2015) and
the most recent OECD’s ENVTECH search strategy.

8I adapted to REGPAT the search strategies for fossil-fuel patents available online from the IEA.
For full details, see:https://gitlab.com/ieaddspublic/ieapatstat/
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REGPAT.9 I consider as the year of invention of each patent family the earliest filing
among the patents belonging to that family.

Table 3: Sample of Firms by country

Country Firms Patents Green Dirty Grey

Germany 2780 163089 13982 12707 3619
Spain 192 4000 327 200 27
France 1112 63740 5142 5285 527
Italy 716 17506 1310 1417 262
Total 4800 248335 20761 19609 4435

Table 3 describes the number of firms and patents by country, breaking down patent
counts for each technological category. In order to control for the path-dependency of
the innovation process, again borrowing from Aghion et al. (2016) I construct several
variables for stocks of previous inventions in dirty and clean technologies, and for
geographical spillovers of knowledge available to the focal firm, as detailed in the next
Section. In addition, to build control variables, I collect data from Eurostat and the
OECD to construct sectoral measures of emissions intensity, following Berestycki et al.
(2022). I use data on emissions intensities based on environmentally-extended input-
output tables. Emissions intensities are defined as GHG emissions embodied in final
demand, from Yamano and Guilhoto (2020), normalized by unit of output.10 Finally,
I collect country-level data for the OECD’s Environmental Policy Stringency Index
(Botta and Koźluk, 2014).

3.2 Methodology

To investigate the relationship between CPU and the innovation dynamics in firms,
I closely follow and adapt the model proposed by Aghion et al. (2016). I test the
hypothesis making use of two symmetric models. In the first model, I regress the count
of green patent, by year and firm, against Climate Policy Uncertainty and a set of
controls:

PATi,t = exp(α + β2CPUi,t−3 + β3EPSc,t−1 ∗GHGc,s,t−1

+β4Ki,t−1) + ηi + τc,t + ψs,t + ϵi,t
(1)

where:

• Ki,t is the firm’s past patent stock;
9Additionally, I correct for discrepancies between firm and patent data. I consider as the starting

year the one prior to the first application filing, for firms in which balance sheet information is available,
or recorded only after the filing of the first patent.

10I consider a number of alternatives for sector emissions, including CO2 intensity per unit of value
added, available from the IEA.
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• τc,t are country by year fixed effects;

• ψs,t are sector by year fixed effects;

• ηi,t are firm fixed effects;

• ϵi,t is the idiosyncratic error term.

Patent flows are built for three sets of technologies: green, dirty and grey, as count
variables by firm and year. I construct the exposure to CPU for the focal firm i,
similarly to how Aghion et al. (2016) construct their variable for fuel prices, reflecting
the importance of country c for firm i in terms of exposure to policy uncertainty. Firms,
in fact, are not subject to Climate Policy Uncertainty deriving from only the country in
which they are headquartered, but CPU is weighted by the average share of inventors
that the firm has in that country. Inventors’ shares are built using REGPAT’s database,
and each CPU measure is in turn constructed as:

CPUi,t =
∑
c∈C

wi,c ∗ CPUc,t (2)

Where wi,c is a time-invariant, firm-specific weight, where wi,c is the (average) share
of inventors of firm i in country c, over the period of observation for the firm. Inventors
are drawn from the patents’ database, and they are assigned to both a country and
a firm, based on available information on inventor’s location. While inventors could
have moved throughout time, I build this indicator as the average share of inventors
that each firm has in each country c . I construct identical measures for the directional
indicators of positive CPU (variable CPUp) and negative CPU (variable CPUm). In
the main specifications testing for the hypothesis, I include both variables for CPU
direction as regressors. In equation 1, I include country by year fixed effects in or-
der to control for macroeconomic conditions and business cycle dynamics that might
be correlated with the dependent variables. While country-level policy stringency in
environmental regulation should be captured by the country-year fixed effects, I also
include an additional control for EPS, interacted with sectoral GHG emissions’ inten-
sity, following Berestycki et al. (2022).11. Additionally, I include sector by year fixed
effects in order to capture sectoral trends that might be correlated with patenting pat-
terns. Ki,t−1 is the total patent stock of firms, controlling for the size of its innovation
portfolio.

Another two symmetric equations are estimated: one for the amount of dirty
patents, and one for subset of dirty patents considered grey technologies, as detailed
in the previous Section. I time-lag uncertainty and control variables to reflect delayed
response, as well as to help mitigate contemporaneous feedback effects. Given the
slowdown in investments at a one year lag found in previous exercises, I assume that at
least three years should be necessary for the effects to translate onto the outcomes of
the innovation process, i.e. on patent applications. I run robustness checks for different
lag structures in the robustness Section. In addition, I also lag previous patent stocks,
and other controls of one year, reflecting again the path-dependency of the innovation

11In robustness checks, I test a different versions of this control, building it similarly to Equation 2
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process. Patent stocks are constructed following an inventory rule with depreciation
rate r of 20%:

Ki,t = (1− r)Ki,t−1 + PATi,t (3)

The total patent stock of a firm, however, does not allow me to distinguish between
green and dirty technologies already available to the firm, as well as the geographical
spillovers that might affect patenting patterns. In order to explicitly account for the
path dependency of the innovation process, I break Ki,t into different components, ac-
counting for both internal and external spillovers, again following closely the approach
proposed in Aghion et al. (2016). The stock of knowledge of the firm can be expressed
in green and dirty components, both internal and external to the firm:

Ki,t = GreenStocki,t +DirtyStocki,t + SPGreeni,t + SPDirtyi,t (4)

Where:

• GreenStocki,t is the firm’s own green patent stock;

• DirtyStocki,t is the firm’s own dirty patent stock;

• SPGreeni,t are country-level green spillovers to firm i in period t;

• SPdirtyi,t are country-level dirty spillovers to firm i in period t;

The stocks of green and dirty patents, for firm i, are again constructed using the
inventory method, and control for the path-dependency in the innovation process: the
probability of patenting in a specific technology depends on the past track-record of
technologies patented in that domain. In addition, country-level spillovers to firm i,
control for the external factors that can affect the focal firm’s patenting: green (dirty)
patenting, can be influenced by the availability of similar technologies outside the firm
in that same country. Firms can learn from the available knowledge pool in green and
dirty patents, which affects the probability of applying for more patents in the following
years. The construction is again symmetrical for dirty and green technologies, and
similar to the approach used for that of policy uncertainty. For green technologies, the
spillovers available to firm i at time t are:

SPGreeni,t =
∑
c

wi,c ∗ SPGreenc,t (5)

The spillover pool in country c (SPGreenc,t) is defined as the sum of all other firms’
patent stocks of green technologies (KGreenj,t):

SPGreenc,t =
∑
j ̸=i

wj,cKGreenj,t (6)

As detailed in Aghion et al. (2016) and discussed in follow-up works (von Schickfus,
2021), the baseline Directed Technical Change model estimated with two-way fixed
effects, would be inconsistent under strict exogeneity, due to serial correlation of the
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different patent stocks constructed. Thus, borrowing from their approach, I implement
the Blundell-Griffith-Van Reenen (BGVR) estimator (Blundell et al., 1999), which re-
lies on the pre-sample mean of the dependent variable in order to proxy for individual
fixed effects. This approach is well-suited to patent data, and in empirical setups where
data for the dependent variable is available for the pre-sample period.

I run a set of symmetric models for green, dirty and grey patent flows using a
Maximum-Likelihood Poisson estimators, accounting for the count data nature of the
dependent variables. In addition to the pre-sample mean of the dependent variable,
I add controls for firm-level variables. First, I control for the share of patents of the
firm in its country-sector (variable ShPatents), controlling for potential competition
effects. In robustness checks, I also control explicitly for the size of the firms. Because
of the limited availability of consistent balance sheet information (employment or total
assets) before the 2010 period, I build a time-invariant variable, collecting the last
available data point for the firms’ assets. I build a categorical variable for the size of
the firm (variable FirmSize) based on the quartiles of the distribution of assets. All
right-hand side variables are log-transformed, including the pre-sample mean. Finally,
given some firms have no lagged patent stocks for some periods, I follow Aghion et al.
(2016) and add three dummy variables if the green or dirty (lagged) stocks are zero,
or if both are zero. In Table 8 of the Appendix, I provide descriptive statistics for all
the variables created.

4 Results
I first test the baseline models, regressing the counts of green, dirty, and grey patents
against the aggregate index for CPU. In Table 4, I present estimation results, where
in all specifications I include the dummies for the absence of green or dirty patents
in the past stock of the firms, which are always significant and not reported. In even
columns, I add to the baseline specification the control for the share of country-sector
patents of the firm. Standard errors are always clustered at the firm level.
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Table 4: Poisson Regression - Baseline estimates for CPU - Green, Dirty and Grey
patents.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPU 0.0658∗∗∗ 0.0660∗∗∗ 0.0908∗∗ 0.0870∗∗ 0.1180 0.1159
(0.0138) (0.0144) (0.0359) (0.0348) (0.0895) (0.0905)

GreenStock 0.9670∗∗∗ 0.9648∗∗∗ 0.0878∗∗∗ 0.1007∗∗∗ 0.0384 0.0570
(0.0174) (0.0174) (0.0195) (0.0202) (0.0529) (0.0580)

DirtyStock 0.0398∗∗∗ 0.0536∗∗∗ 0.9418∗∗∗ 0.9437∗∗∗ 0.9952∗∗∗ 1.004∗∗∗
(0.0121) (0.0117) (0.0169) (0.0166) (0.0593) (0.0555)

SPILLgreen 0.4909∗∗ 0.5183∗∗∗ 0.1076 0.1245 0.7554 0.8411
(0.1940) (0.1958) (0.3593) (0.3784) (0.9403) (1.004)

SPILLdirty -0.3984∗ -0.4170∗∗ -0.1201 -0.1140 -1.192 -1.243
(0.2051) (0.2055) (0.3660) (0.3842) (0.9333) (1.001)

pre-sample mean -0.0206∗∗∗ -0.0066 -0.0468∗∗∗ -0.0339∗∗∗ 0.0228 0.0351
(0.0058) (0.0061) (0.0089) (0.0086) (0.0456) (0.0494)

Emit -0.0480 -0.0466 -0.0853 -0.0884 0.4875∗ 0.5017∗
(0.0639) (0.0635) (0.0681) (0.0660) (0.2599) (0.2581)

EPS*Emit 0.0110 -0.0000 0.0449 0.0309 0.2935 0.2620
(0.0479) (0.0475) (0.0484) (0.0474) (0.2373) (0.2236)

ShPatents -0.0514∗∗∗ -0.0640∗∗∗ -0.0926
(0.0120) (0.0192) (0.0742)

Observations 86,562 86,562 82,082 82,082 59,452 59,452
Pseudo R2 0.65247 0.65321 0.76757 0.76821 0.81496 0.81546
RMSE 0.81964 0.82541 0.86330 0.87008 0.50891 0.51270

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPU
captures firm-level exposure to climate policy uncertainty. GreenStock and DirtyStock are, respectively, the depre-
ciated stocks of own-firm past green or dirty Triadic Patent Families. SPILLGreen and SPILLDirty are firm-level
geographical spillovers to the focal firm in green and dirty technologies. Emit are country-sector-year emissions, and
EPS is the index of Environmental Policy Stringency. ShPatents is the share of firm patents within its country-sector-
year. All models contain dummy variables in case the past stock of green and (or) dirty patents is 0, which are always
significant and not reported. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine
function. Models are estimated by Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors,
reported in parentheses, are clustered at the firm level.
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I find a positive relationship between the aggregate index of CPU for both green
and dirty technologies, suggesting that both climate-related technologies are sensitive
to increases in aggregate uncertainty. The coefficients for green and dirty own stocks
of past patents are positive and significant, as expected. Own patent stocks coeffi-
cients have greater sizes depending on the technology observed: green past stocks have
a higher magnitude for green technologies than for dirty and grey technologies, and
in the latter case are also insignificant. On the contrary, own stocks of dirty innova-
tions have a higher magnitude for dirty and grey technologies. The positive sign for
own past stocks of opposite nature (dirty stocks for green, and green stocks for dirty)
have a smaller coefficient but are still positive, indicating possible between-technology
spillovers within firms. External spillovers SPILLGreen are also positively correlated
with green patent flows, while SILLdirty are have a negative correlation, whereas they
are insignificant for dirty technologies.

As mentioned, the aggregate index does not allow us to distinguish between the
different directions of uncertainty-related indexes. Therefore, in Table 5, I test the
two complementary hypotheses developed in Section 2, and include as independent
variables of interest the indexes for CPUp and CPUm, respectively reflecting CPU
capturing the positive or negative direction of uncertainty in terms of environmental
regulation.
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Table 5: Poisson Regression - Baseline estimates for CPU - Positive and negative
policy stance.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPUp 0.6122∗∗ 0.6394∗∗ -0.2737 -0.2948 -1.244∗∗ -1.335∗∗
(0.2510) (0.2523) (0.3014) (0.3120) (0.6017) (0.6204)

CPUm -0.5453∗∗ -0.5718∗∗ 0.3654 0.3836 1.354∗∗ 1.446∗∗
(0.2518) (0.2532) (0.2959) (0.3062) (0.5983) (0.6123)

GreenStock 0.9671∗∗∗ 0.9649∗∗∗ 0.0877∗∗∗ 0.1007∗∗∗ 0.0378 0.0566
(0.0174) (0.0174) (0.0195) (0.0202) (0.0529) (0.0580)

DirtyStock 0.0397∗∗∗ 0.0536∗∗∗ 0.9418∗∗∗ 0.9438∗∗∗ 0.9957∗∗∗ 1.005∗∗∗
(0.0121) (0.0117) (0.0168) (0.0166) (0.0593) (0.0555)

SPILLgreen 0.5073∗∗∗ 0.5379∗∗∗ 0.1062 0.1245 0.7106 0.8024
(0.1944) (0.1961) (0.3598) (0.3797) (0.9538) (1.019)

SPILLdirty -0.4175∗∗ -0.4390∗∗ -0.1173 -0.1117 -1.141 -1.195
(0.2049) (0.2052) (0.3663) (0.3852) (0.9472) (1.019)

pre-sample mean -0.0207∗∗∗ -0.0066 -0.0468∗∗∗ -0.0338∗∗∗ 0.0229 0.0355
(0.0058) (0.0061) (0.0089) (0.0086) (0.0456) (0.0495)

Emit -0.0477 -0.0464 -0.0838 -0.0868 0.4939∗ 0.5099∗∗
(0.0640) (0.0636) (0.0680) (0.0659) (0.2598) (0.2579)

EPS*Emit 0.0097 -0.0014 0.0458 0.0319 0.3022 0.2714
(0.0481) (0.0477) (0.0485) (0.0475) (0.2387) (0.2245)

ShPatents -0.0516∗∗∗ -0.0643∗∗∗ -0.0942
(0.0120) (0.0192) (0.0743)

Observations 86,562 86,562 82,082 82,082 59,452 59,452
Pseudo R2 0.65254 0.65328 0.76759 0.76824 0.81505 0.81557
RMSE 0.81957 0.82535 0.86289 0.86967 0.50835 0.51212

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp
captures firm-level exposure to climate policy uncertainty with an environmentally-positive policy stance. CPUm in-
stead captures environmentally-negative policy stance. GreenStock and DirtyStock are, respectively, the depreciated
stocks of own-firm past green or dirty Triadic Patent Families. SPILLGreen and SPILLDirty are firm-level geograph-
ical spillovers to the focal firm in green and dirty technologies. Emit are country-sector-year emissions, and EPS is the
index of Environmental Policy Stringency. ShPatents is the share of firm patents within its country-sector-year. All
models contain dummy variables in case the past stock of green and (or) dirty patents is 0, which are always significant
and not reported. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function.
Models are estimated by Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in
parentheses, are clustered at the firm level.
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In line with the expectations in hypothesis 1a, column (2) shows a positive re-
lationship between CPUp and green patenting, while turning negative for CPUm.
Interestingly, while the directions of the signs are in line with hypothesis 1b, the coeffi-
cients for the total of dirty technologies are insignificant. However, in columns (5)-(6),
I present the same results only considering the subset of dirty patents comprehending
grey technologies, which are in this case significant. In line with hypothesis 1b, co-
efficients suggest that uncertainty due to potential setbacks in climate policy-making,
is positively related with more grey patenting, while the opposite happens in the case
of green technologies. These results seem to confirm both hypotheses. Unpacking ag-
gregate Climate Policy Uncertainty reveals a symmetric relationship with green and
polluting inventions, suggesting that, depending on its stance, CPU is an important
factor for directing technological change.

In order to to confirm these results, I test for different measures of CPUp and
CPUm. In table 6, in odd columns, I include the ratios between the country-level
index for positive-leaning uncertainty (RatioP ) over the general CPU index and its
counterpart RatioM . In even columns, instead, I calculate the ratio between the num-
ber of positive or negative events over the total number of events (variables PeaksP
and PeaksM) detected with the algorithm described in Section 3.1.1. Again, these
results seem to confirm the two hypotheses, suggesting a that there is a significant
relationship between the direction of uncertainty in climate policies, and that of the
technological efforts undertaken by firms.
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Table 6: Poisson Regression - Baseline estimates for CPU stances - alternative mea-
sures.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

RatioP 0.7808∗∗ -0.4563 -1.330∗
(0.3084) (0.3831) (0.7177)

RatioM -0.6551∗∗ 0.5410 1.424∗∗
(0.3076) (0.3689) (0.7043)

PeaksP 0.1190∗∗∗ -0.0067 -0.0312
(0.0432) (0.0512) (0.0688)

PeaksM -0.0041 0.1085∗ 0.2242∗∗
(0.0460) (0.0597) (0.0967)

Observations 72,040 72,040 67,809 67,809 49,725 49,725
Pseudo R2 0.65688 0.65693 0.76741 0.76745 0.81231 0.81239
RMSE 0.86039 0.86051 0.92261 0.92246 0.52828 0.52888

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. RatioP
is the ratio between the total level of CPU and its sub-index of environmentally-positive stance. RatioM is the ratio
between CPU and environmentally-negative CPU. PeaksP and PeaksM , respectively, represent the total number
of events of positive or negative stance, over the total number of events detected by the peak-detection algorithm.
Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. All models contain
full controls and dummies for null past stocks of green and (or) dirty patents. Models are estimated by Maximum-
likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the firm
level.
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4.1 Heterogeneity and robustness

In Table 7 I divide the sample into different historical periods, running separate esti-
mations focusing on the historical evolution of this relationship. Interestingly, while for
the period 1995-2005 only green technologies seem sensitive to the directions of policy
uncertainty, the coefficients for dirty technologies are again relevant and much higher
for the 2010-2020 period, with notable differences between grey and dirty technolo-
gies. Different historical phases, seem to suggest a high degree of heterogeneity, across
time, both for acceleration and deceleration of policies, and for the development of
climate-relevant technologies. This heterogeneity could be driven by acceleration and
deceleration of specific policies. In the last decade, in light of an increased implemen-
tation of climate policies, green and dirty might be perceived as diametric alternatives,
and policy-direction has probably been more credible in terms of their support of one
of the two.

Additionally, innovations evolved over time, and the technological linkages between
alternative technologies might be changing over time. Grey technologies (on average)
appeared more sensitive to CPUp and CPUm then general dirty ones, while the sig-
nificance seem to be driven by dirty ones in the most recent period. While speculative,
these results seem promising in analyzing the dynamic effects of CPU, depending on
technological maturity, and in terms of the degree of substitutability and complemen-
tarity of technologies with opposite environmental effects.
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Table 7: Poisson Regression. CPU stances: Historical analysis.

1995-2005 2000-2010 2005-2015 2010-2020
Green Dirty Grey Green Dirty Grey Green Dirty Grey Green Dirty Grey

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

CPUp 0.9749∗∗ -0.4172 -0.8527 0.1774 -2.897∗ -2.660∗∗ 0.2081 0.3255 -2.280∗∗ 2.155∗∗∗ -3.308∗∗∗ -1.459
(0.3897) (0.5638) (1.130) (0.6943) (1.527) (1.298) (0.4515) (0.6777) (1.048) (0.8050) (0.8258) (1.339)

CPUm -0.8883∗∗ 0.6099 0.9368 -0.1295 3.004∗ 2.754∗∗ -0.1710 -0.2453 2.339∗∗ -2.121∗∗∗ 3.285∗∗∗ 1.485
(0.3847) (0.5533) (1.112) (0.6925) (1.537) (1.349) (0.4587) (0.6781) (1.087) (0.8076) (0.8196) (1.336)

Num. Firms 3952 3952 3952 4011 4011 4011 3908 3908 3908 3678 3678 3678
Observations 23,107 22,800 18,207 24,069 23,370 18,016 23,594 22,150 16,300 21,560 18,728 11,971
Pseudo R2 0.60821 0.80119 0.86894 0.67785 0.76176 0.79337 0.68525 0.75026 0.71657 0.64898 0.68547 0.62463
RMSE 0.72646 1.2568 0.67817 1.0306 0.86549 0.39836 1.0658 0.70783 0.37594 0.71811 0.53636 0.28074

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp captures firm-level exposure to climate policy uncertainty with
an environmentally-positive policy stance. CPUm instead captures environmentally-negative policy stance. All models contain full controls and dummy variables in case the past
stock of green and (or) dirty patents is 0, which are always significant and not reported. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine
function. Models are estimated by Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the firm level.
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In the Appendix, I report several robustness checks. In Table 9, I run the same
baseline estimates for CPUp and CPUm, by weighting regressions by the average
stock of patents of the firm. The coefficients for CPUm and dirty patents are of higher
magnitude, and more significant if compared with Table 5, suggesting that CPUm,
pointing a negative direction, might stimulate overall polluting patenting. Weighting
also confirms, at the 10% significance level the correlation between CPUp and green
patents. Grey patents remain highly sensitive to both directions of CPU, with coeffi-
cients of larger magnitudes.

In Table 11 I add two controls. First, I include a control for the measure of Eco-
nomic Policy Uncertainty (Baker et al., 2016), calculated analogously to that of CPU.
In addition, I also include the categorical variable for quartiles of firm size. The direc-
tion of the effects is consistent with previous results, with CPUp and CPUm having
opposite effects on green and dirty technologies, and again the latter are driven by grey
patents. In Table 12 I build a control for Environmental Policy Stringency similar to
that I build for my measure of CPU, again substantially confirming the relevance of
the CPU sub-indexes for DTC.

In Table 10 I run a leave-one out exercise, excluding one country at the time from
the sample. Interestingly, it seems that Germany is driving the significance in results,
as it is possible to see in the last three columns. While the numerosity of firms left
in the sample could be an issue, this result is very suggestive on the underlying geo-
graphical heterogeneity of CPU. A promising direction in policy uncertainty research,
is the investigation of cross-country linkages and spillovers of policy uncertainty (Balli
et al., 2017; Abakah et al., 2021). One possible reason for this result could be the
relative weight that Germany has in both European climate policy-making, and as a
power-house for the production of green technologies. Furthermore, the integration
of value chains across countries (and between technologies) might also be a factor at
play, and the role of technological linkages between products and industries should be
further explored.

More puzzling, instead, are the dynamics on the timing of these associations. Fig-
ure 4 in the Appendix plots the coefficients and standard errors of CPUp and CPUm
tested at different time lags. In the case of green patents, the only significant lag is at
3 years, and the effects disappears in the longer term for all dependent variables. The
significance across technologies at t-3, could be confirming the idea that the innovation
output takes time to react to a rise in uncertainty. Interestingly, however, short-term
correlations with grey inventions seem to be in the same direction as that of green
technologies. This refers again to the nature of different technologies as substitutes or
complements, revealing a potential dynamic complementarity between grey and green
patents. Firms might be adopting a strategic behavior in reducing emissions of their
products in the short term, while switching to alternative green technologies in the
longer term.

However, further research is needed in this direction to account for the high-degree
of volatility in patenting activity. Grey patents only represent a small fraction of
total patenting activity, and a macro-level analysis modeling more precisely sectoral
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dynamics could help clarify this evidence. Moreover, a source of noise could also be
the use of the earliest filing applications for patents. Filing years of technologies are
an approximation of the timing of innovation activities, but are also the byproduct of
legal proceedings, and crucially depend on invention quality. In this sense, keeping in
mind that these correlations regard high-end innovation, for which arguably the cost
in R&D is higher, looking at the whole spectrum of patent quality could reveal a dif-
ferent pattern of strategic behavior relevant for directed technical change. Evidence on
uncertainty and the qualitative features of innovation could render important insights
(Bhattacharya et al., 2017). In this framework, the interplay between the business-
cycle features of uncertainty and heterogeneity in innovation development could shed
further light on the forces directing clean and dirty technological change (Manso et al.,
2023).

4.2 Limitations and further research

A number of other limitations apply to this study. First, while being a promising
research avenue, linking innovation activities proxied by patents and uncertainty mea-
sures, suffers from a discrepancy in frequencies of the data employed. Patent filing
dates are relevant at the yearly level, but, as shown in Section 3.1.1, much variation in
CPU indexes is lost by aggregating at the yearly level. This loss of information about
higher-frequency dynamics limits the understanding of short and long-term behaviors
of firms. Other studies employing quarterly measures for investments, relying on firms’
reporting, exploit this variation, losing on the technological heterogeneity by consid-
ering aggregate investments. Future research could exploit higher-frequency measures,
for example in survey data, to bring further evidence on the time-dynamics of green vs
brown technologies. As mentioned, these dynamics might also be explored in the light
of the linkages between low and high-carbon inventions. As these technologies present
spillovers and path-dependencies, there might be supply-chain related factors at play,
which policymakers should be considering.

The geographical coverage of this analysis is mainly driven by the availability of
adequate sources of news data. The external validity of this study, therefore, warrants
a more thorough analysis, especially considering the peculiar evolution of news markets
in each specific country.

Furthermore, while the fixed effects strategy employed in this paper should cap-
ture relevant confounders, more econometric work is necessary in order to asses the
causality of the relationships uncovered. First, the use of pre-sample means and the
BGVR estimator could not be fully capturing firm fixed effects. Similar approaches,
both in terms of control function estimations and structural modeling could be suit-
able to address these issues. Second, the nature of firms is increasingly global. Better
data is necessary in order to disentangle their geographical presence, both for emissions
(which can have strongly local components), and for the geography of their intellectual
property protection. Additionally, a number of political economy concerns could be
biasing these results, specifically in terms of reverse causality. Bigger firms and more
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dominant technological actors, arguably have a much higher potential for influencing
government action via lobbying efforts, or by setting an anti-environmental agenda in
the media. While these concerns are mitigated by the fact that climate policies are
often discussed in an inter-governmental setup, and that the consensus for action is
confirmed by international treaties, lobbying could cause increases in CPU, or in one
of its sub-components.

Nevertheless, this exercise uncovers another potential avenue for future research.
The lack of sectoral variability in CPU indexes (and most of the available EPU ones)
could be an important gap to fill. Sub-indexes derived for CPUp and CPUm, and are
blind to sectors and technologies. Arguably, both climate policies and CPU are indeed
sector-specific, if not technology-specific, thinking for example to innovation subsidies.
Recent papers (Juhász et al., 2022; Evenett et al., 2024) applied text-as-data techniques
to the categorization of policy texts, quantifying (green) industrial policy efforts. In
this sense, empirical applications based on rich textual data, as in this work, could
give nuance to uncertainty measures, adding sectoral or technological dimensions. In
the same vein of (Gugler et al., 2024), heterogeneity in CPU linked to specific policy
instruments (subsidies, carbon taxes, etc.) could be explored. A promising approach
for future applications is the mix of policy-stance with content analysis, breaking down
policy-uncertainty into sub-components.

5 Conclusions
In this chapter, I investigate the role of Climate Policy Uncertainty for directing tech-
nical change. I build a novel dataset by scraping newspaper archives for four European
countries: Germany, France, Italy and Spain. I apply text-as-data techniques to derive
sub-measures for policy stance underlying CPU, showing a high-degree of variation be-
tween positive-leaning and negative-leaning articles. I bring forward additional empir-
ical evidence by constructing a panel of European firms, and testing relevance of CPU
sub-indexes in directing environmentally-sensitive technologies. I employ a model of
directed technical change and study patenting activity of firms in both low-carbon and
polluting technologies.

I find that CPU pointing towards stronger climate policy implementation is posi-
tively associated to the development of green technologies, and instead negatively to
polluting ones. On the contrary, the measure of CPU implying setbacks weakening
climate policy, shows symmetric results, by favoring dirty innovation and discourag-
ing low carbon inventions. These results suggest that CPU might be affecting firms’
expectations about the future value of environmentally-sensitive inventions and the di-
rection of their R&D efforts. I propose a novel approach to identify CPU articles from
newspaper data, showing that it could be flexibly applied to different data sources in
multilingual contexts, through the use of supervised deep learning architectures.

In line with the extant literature, I find that not only realized climate policy but
also uncertainty about the probability of future policies affects firm behaviors (Basaglia
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et al., 2021; Khalil and Strobel, 2023). These findings suggest a complex and dynamic
response, in terms of firms behavior, to differently-leaning uncertainty, and show the
relevance of CPU directionality in the belief revision of firms. I add to the previous
literature by showing that the direction of this probability has opposite effects on green
and dirty innovations. Directing the economy away from a carbon intensive equilib-
rium to a cleaner growth path is a priority for policymakers, and governments have
been experimenting with mission-oriented policy agendas for sustainability (Mazzucato,
2018), and new forms of green industrial policy (Rodrik, 2014). Consensus, clarity and
communication surrounding climate and green industrial policies is deemed even more
relevant in light of the significant effects on patenting patterns. Legislators can accel-
erate divestment from fossil technologies and foster green growth by committing to a
decisive climate policy agenda. Governments can provide clear signals to the market
in support of low-carbon growth, altering firms’ expectations and directing innovative
efforts towards a cleaner growth path. While preliminary, these results suggest that
potential cost of climate policy could be lowered by ensuring coherent market signals
to firms. On top of policies, government certainty and commitment to a strong climate
agenda could spur virtuous circles, steering economic growth towards a low-carbon
future.
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Appendix

Table 8: Descriptive Statistics

Count Mean Std Min Median Max

CPU 101919 82.76 45.56 0.00 75.44 243.28
CPUp 101919 81.82 31.45 0.00 88.88 139.97
CPUm 101919 81.31 31.43 0.00 89.42 145.27
Green 101919 0.20 1.71 0.00 0.00 114.00
Dirty 101919 0.17 2.72 0.00 0.00 363.00
Grey 101919 0.04 1.53 0.00 0.00 236.00
Green stock 101919 0.96 7.00 0.00 0.00 356.25
Dirty stock 101919 0.87 11.74 0.00 0.00 1075.12
SPILLGreen 101919 4420.78 3876.12 11.46 3458.82 37151.78
SPILLDirty 101919 3026.18 2312.28 9.43 2620.57 17798.43
EPS 101919 2.45 1.51 0.33 2.46 5.17
Emit 94377 0.02 0.18 0.00 0.00 8.22
ShPatents 94377 0.09 0.24 0.00 0.00 1.00
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Figure 3: Peak detection algorithm.
The dotted line plots the monthly series of CPU for Italy. In blue, I represent the moving average,
and in green the threshold standard deviations for detecting peaks. In the bottom panel, events are
flagged as 1 (peaks) or -1 (troughs). I only consider positive deviations (peaks) in the count of events
for each time series derived.
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Table 9: Weighted Poisson Regression - Baseline estimates for CPU - Positive and
negative policy stance.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPUp 0.6190∗ 0.6487∗ -0.5998 -0.6014 -1.773∗∗ -1.793∗∗
(0.3597) (0.3615) (0.3840) (0.4053) (0.8453) (0.8381)

CPUm -0.5311 -0.5518 1.078∗∗ 1.074∗∗ 2.574∗∗∗ 2.603∗∗∗
(0.3538) (0.3545) (0.4188) (0.4322) (0.8620) (0.8372)

GreenStock 1.034∗∗∗ 1.017∗∗∗ 0.1459∗∗∗ 0.1573∗∗∗ -0.0278 -0.0256
(0.0477) (0.0427) (0.0322) (0.0331) (0.1203) (0.1203)

DirtyStock 0.0171 0.0338∗ 0.9404∗∗∗ 0.9401∗∗∗ 1.282∗∗∗ 1.282∗∗∗
(0.0225) (0.0192) (0.0289) (0.0260) (0.1046) (0.1041)

SPILLgreen 1.331 1.428 1.358∗∗ 1.429∗∗ 3.299∗∗∗ 3.346∗∗∗
(0.9559) (0.9558) (0.6264) (0.6669) (1.157) (1.159)

SPILLdirty -1.389 -1.430 -1.494∗∗ -1.478∗∗ -3.421∗∗∗ -3.437∗∗∗
(1.047) (1.046) (0.6465) (0.6800) (1.126) (1.133)

pre-sample mean -0.0380∗∗∗ -0.0211 -0.0771∗∗∗ -0.0647∗∗∗ -0.1033∗∗ -0.1008∗
(0.0143) (0.0130) (0.0163) (0.0156) (0.0525) (0.0558)

Emit 0.0096 0.0045 0.0036 -0.0006 0.8018∗ 0.7961∗
(0.1049) (0.1058) (0.1008) (0.0984) (0.4110) (0.4084)

EPS*Emit 0.0705∗ 0.0614 0.0819 0.0844 -0.3819∗ -0.3807∗
(0.0419) (0.0412) (0.0620) (0.0554) (0.2197) (0.2163)

ShPatents -0.0438∗ -0.0582∗∗ -0.0159
(0.0256) (0.0254) (0.0499)

Observations 86,562 86,562 82,082 82,082 59,452 59,452
RMSE 0.77593 0.77660 0.71955 0.71647 0.37788 0.37771

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp
captures firm-level exposure to climate policy uncertainty with an environmentally-positive policy stance. CPUm in-
stead captures environmentally-negative policy stance. GreenStock and DirtyStock are, respectively, the depreciated
stocks of own-firm past green or dirty Triadic Patent Families. SPILLGreen and SPILLDirty are firm-level geograph-
ical spillovers to the focal firm in green and dirty technologies. Emit are country-sector-year emissions, and EPS is the
index of Environmental Policy Stringency. ShPatents is the share of firm patents within its country-sector-year. All
models contain dummy variables in case the past stock of green and (or) dirty patents is 0, which are always significant
and not reported. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function.
Models are estimated by Maximum-likelihood Poisson regressions, weighted by the average number of patents for each
firm, over the period of observation. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at
the firm level.
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Table 10: Poisson Regression. CPU stances: Split sample analysis.

Excluding France Excluding Italy Excluding Spain Excluding Germany
Green Dirty Grey Green Dirty Grey Green Dirty Grey Green Dirty Grey

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

CPUp 0.6848∗∗ -0.4028 -1.460 0.4973 -0.8001∗ -2.020∗∗∗ 0.7551∗∗ -0.3604 -1.876∗∗∗ 0.5442 -0.3826 -0.3225
(0.3392) (0.4092) (0.9879) (0.3690) (0.4502) (0.7339) (0.3359) (0.4096) (0.6122) (0.3909) (0.6181) (0.7653)

CPUm -0.6244∗ 0.4503 1.485 -0.4372 0.8890∗∗ 2.140∗∗∗ -0.6899∗∗ 0.4775 1.975∗∗∗ -0.5086 0.4382 0.3334
(0.3380) (0.3960) (0.9903) (0.3704) (0.4458) (0.7351) (0.3382) (0.4119) (0.6107) (0.3904) (0.6020) (0.7618)

Firms 3229 3229 3229 3572 3572 3572 4007 4007 4007 1705 1705 1705

Observations 55,106 52,403 37,760 61,602 57,937 42,262 69,026 65,217 48,660 26,563 21,544 9,870
Pseudo R2 0.66901 0.77451 0.83826 0.67090 0.78022 0.82482 0.66006 0.76938 0.81445 0.59669 0.72441 0.62612
RMSE 0.86068 0.84612 0.54918 0.91030 0.95265 0.54967 0.87477 0.93573 0.53189 0.58320 0.80251 0.41412

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp captures firm-level exposure to climate policy uncertainty with
an environmentally-positive policy stance. CPUm instead captures environmentally-negative policy stance. All models contain full controls and dummy variables in case the past
stock of green and (or) dirty patents is 0, which are always significant and not reported. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine
function. Models are estimated by Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the firm level.
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Table 11: Poisson Regression - Baseline estimates for CPU stances - Additional con-
trols.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPUp 0.6803∗∗ -0.4285 -1.645∗∗
(0.3099) (0.3878) (0.6528)

CPUm -0.6011∗ 0.5408 1.924∗∗∗
(0.3151) (0.3913) (0.6860)

PeaksP 0.1208∗∗∗ -0.0182 -0.0523
(0.0452) (0.0563) (0.0786)

PeaksM -0.0144 0.0870 0.2436∗∗∗
(0.0493) (0.0616) (0.0914)

EPU -0.0211 0.0073 -0.0374 0.0408 -0.2377∗∗∗ -0.0474
(0.0384) (0.0191) (0.0569) (0.0382) (0.0794) (0.0585)

Observations 72,040 72,040 67,809 67,809 49,725 49,725
Pseudo R2 0.65696 0.65713 0.76813 0.76811 0.81637 0.81626
RMSE 0.86229 0.86229 0.92212 0.92288 0.50474 0.50629

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓
Firm Size Dummy ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp
captures firm-level exposure to climate policy uncertainty with an environmentally-positive policy stance. CPUm
instead captures environmentally-negative policy stance. PeaksP and PeaksM , respectively, represent the total number
of events of positive or negative stance, over the total number of events detected by the peak-detection algorithm. EPU
is the firm-level exposure to Economic Policy Uncertainty. All models contain full controls and dummy variables in
case the past stock of green and (or) dirty patents is 0, which are always significant and not reported. Continuous
explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Models are estimated by
Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered
at the firm level.

47



Table 12: Poisson Regression - Baseline estimates for CPU stances - alternative con-
struction for EPS.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPUp 0.6972∗∗ -0.4363 -1.518∗∗
(0.3096) (0.3911) (0.7262)

CPUm -0.6125∗∗ 0.5286 1.612∗∗
(0.3099) (0.3848) (0.7278)

PeaksP 0.1200∗∗∗ -0.0091 -0.0483
(0.0432) (0.0522) (0.0766)

PeaksM -0.0005 0.1113∗ 0.2342∗∗
(0.0461) (0.0593) (0.1058)

EPS -0.1253∗∗ -0.0665 -0.0895 -0.0267 -0.2624∗ -0.2159∗
(0.0515) (0.0456) (0.0668) (0.0657) (0.1371) (0.1145)

Observations 72,058 72,058 67,826 67,826 49,725 49,725
Pseudo R2 0.65697 0.65704 0.76804 0.76793 0.81585 0.81583
RMSE 0.86151 0.86161 0.91886 0.92111 0.50531 0.50689

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓
Firm Size Dummy ✓ ✓ ✓ ✓ ✓ ✓
Cluster S.E. Firm Firm Firm Firm Firm Firm
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp
captures firm-level exposure to climate policy uncertainty with an environmentally-positive policy stance. CPUm
instead captures environmentally-negative policy stance. PeaksP and PeaksM , respectively, represent the total number
of events of positive or negative stance, over the total number of events detected by the peak-detection algorithm.
EPS is the Environmental Policy Stringency index, constructed analogously to CPU. All models contain full controls
and dummy variables in case the past stock of green and (or) dirty patents is 0, which are always significant and
not reported. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function.
Models are estimated by Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in
parentheses, are clustered at the firm level.
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Figure 4: Timing of different lags.
Dependent variables are flows of Triadic Patent Families, identified in their respective technological
categories. CPUp captures firm-level exposure to climate policy uncertainty with an environmentally-
positive policy stance. CPUm instead captures environmentally-negative policy stance. All models
contain full controls and dummy variables in case the past stock of green and (or) dirty patents is 0,
which are always significant and not reported. Continuous explanatory variables are log-transformed,
applying the inverse hyperbolic sine function. Models are estimated by Maximum-likelihood Poisson
regressions. Standard errors at a 5% level are plotted in the Figure.
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An application of semi-supervised learning in the case of Climate
Policy Uncertainty

I provide here an example of architecture for out-of-sample labelling of news data, test-
ing the flexibility of LLM-based methods for labelling of policy uncertainty in news-
papers’ articles. The objective of this exercise is similar to those of semi-supervised
label propagation algorithm (Iscen et al., 2019). In these setups, semi-supervised deep
learning exploits a small number of human-curated labelled data, in cases where larger
unlabelled data of similar nature are available. The case for this application builds on
recent literature using artificial LLM labels as ground truth, and train semi-supervised
algorithms on unlabelled data. The algorithm, rather simple in its nature, can be flex-
ibly exploited in the case of policy uncertainty exercises, in which larger amounts of
data from a diverse set of news archives can be added.

The architecture is based on recent literature employing LLM labelled dataset, in
which a "teacher" algorithm is labelling data subsequently used by another "student"
model (Pangakis and Wolken, 2024). This approach, promising in social sciences, can
be leveraged to reduce cost of labelling, and potentially achieving human-level quality
(Gilardi et al., 2023). After labelling the sample of articles as explained in Section
3.1.1, I extract a random sample of articles amounting to 50% of the dataset, for each
country (and therefore each language). In turn, I train a "student" model for each
language. Leveraging the superior syntactic properties of tensor-based architectures
(in comparison with word-occurrence models), I train Google’s Bidirectional Encoder
Representation from Transformers (BERT) on two training exercises. First, I train
BERT for the prediction of true positives (intended as the LLM-labelled positives) in
the sample of Climate Policy Uncertainty articles. Second, I train BERT in a multi-
class labelling exercise, based on the direction of climate policy uncertainty labels. The
training is performed on the BERT model pre-trained on a large corpus of multilingual
data (Devlin, 2018). The relevance of this exercise lies in the possibility to exploit
labelled data, costly to obtain, to other news sources within the same language, over
a number of different directions. In terms of parameters, BERT is a much smaller
model, compared with the latest ChatGPT-4o. Scores for evaluation metrics, across
three epochs, are reported in Figure 5, for general CPU, and in Figure 6 for CPUp
and CPUm. I report scores for accuracy, precision, recall and F1 scores.

The metrics suggest that the prediction of the binary outcome has a quite high
predictive power, with F1 scores well above 0.8 in all languages. This result shows that
teacher-student architectures are relevant for recognizing news articles about CPU and
able to filter out effectively false negatives, also in a multi-lingual context. Trained
models, much smaller and cheaper than LLM-based labelling could be applied to new
data sources.

For what concerns the directions of effects, instead, the performance of multi-label
is lower. While this attempt could be perfected, human intervention in prompt-tuning,
and in the generation of artificial labels might be necessary for achieving a higher out-
of-sample performance. However, precision and recall are around 0.6 for all languages,
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and the series derived from predicted labels (following the methodology explained in
Section 3.1.1, correlate at the country level at 0.63 for CPUp and 0.78 for CPUm.
Overall, these results are very promising for the use of LLM, deep learning and teacher-
student architectures in applications related to policy uncertainty, with the potential
of making the labelling process cheaper, open source, and flexible and adaptable to
novel data sources.

(a) Germany (b) France

(c) Italy (d) Spain

Figure 5: Evaluation scores for three epochs in training - CPU labelling
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(a) Germany (b) France

(c) Italy (d) Spain

Figure 6: Evaluation scores for three epochs in training - CPU directions
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Table 13: Technological categories for green patents

Description Codes Lower digit purpose
Separation; Purifica-
tion of air, liquids, or
gases

B01D Used in environmental control
technologies such as filtration and
water treatment.

Manufacture of iron or
steel

C21B Includes processes that reduce en-
vironmental impact in steel man-
ufacturing.

Processing of pig-iron
or steel

C21C Focuses on methods to improve
energy efficiency and reduce emis-
sions.

Methods or apparatus
for combustion using
solid fuel

F23B Related to cleaner combustion
technologies for reduced pollu-
tion.

Combustion appa-
ratus using fluid or
pulverized fuel

F23C Involves systems designed for ef-
ficient combustion with minimal
environmental impact.

Cremation; Incinera-
tion of waste

F23G Waste treatment technologies
that minimize emissions.

Removal or treatment
of combustion prod-
ucts

F23J Techniques for controlling and re-
ducing air pollution.

Furnaces; Kilns;
Ovens

F27B Energy-efficient designs and emis-
sions reduction in industrial heat-
ing processes.

Chemical or physical
processes, catalysts

B01J Used in environmental applica-
tions like pollution control and
energy-efficient processes.

Lubricating of internal
combustion engines

F01M Involves technologies to reduce
environmental impact from lubri-
cants.

Testing static or dy-
namic structures, me-
chanical structures

G01M Environmental monitoring and
testing technologies.

Magnetic or electro-
static separation of
solid materials

B03C Used in recycling and waste pro-
cessing.

Fuels not derived from
petroleum, including
biofuels

C10L Development of cleaner, renew-
able energy sources.

Exhaust apparatus for
combustion engines

F01N Technologies for reducing vehicu-
lar emissions.
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Auxiliary equipment
for ships, including
pollution control de-
vices

B63J Marine pollution control.

Treatment of water,
waste water, or sewage

C02F Essential for water purification
and environmental protection.

Materials for specific
applications, includ-
ing environmental
uses

C09K Involves chemicals for environ-
mental protection like soil condi-
tioners.

Water supply installa-
tions

E03C Technologies improving water ef-
ficiency and management.

Sewage disposal E03F Waste management and pollution
control.

Fertilizers, including
those derived from
waste

C05F Involves recycling waste into en-
vironmentally friendly fertilizers.

Ships or other water-
borne vessels; Equip-
ment for ships

B63B Marine environmental protection
technologies.

Hydraulic engineer-
ing; Dams; Harbors

E02B Involves managing water re-
sources and protecting the
environment.

Cleaning streets; Re-
moving snow, ice, or
sand

E01H Environmental management in
urban areas.

Collecting or trans-
porting refuse; Con-
tainers for refuse

B65F Waste management technologies.

Animal feeding-stuffs;
Non-medical feed ad-
ditives

A23K Related to sustainable agriculture
and environmental protection.

Footwear A43B Involves materials and processes
that reduce environmental impact
in manufacturing.

Cleaning beaches or
sea floor; Other clean-
ing operations

B03B Environmental cleanup technolo-
gies.

Working of metal
powder; Manufacture
of articles from metal
powder

B22F Involves sustainable materials
and processes in manufacturing.
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Preparation or pre-
treatment of plastics
or other compositions

B29B Environmental impact reduction
in plastic processing.

Presses in general;
Pressing

B30B Includes environmentally friendly
pressing methods in manufactur-
ing.

Motor vehicles; Trail-
ers

B62D Technologies for reducing the en-
vironmental impact of vehicles.

Containers for storage
or transport of articles
or materials

B65D Involves packaging technologies
that reduce environmental waste.

Handling thin or fila-
mentary material

B65H Includes materials handling in an
environmentally friendly way.

Manufacture of glass;
Glassware

C03B Technologies to reduce the envi-
ronmental impact of glass manu-
facturing.

Cements; Concrete;
Artificial stone

C04B Focuses on sustainable construc-
tion materials.

Working-up of macro-
molecular substances

C08J Recycling and environmental im-
pact reduction in polymer pro-
cessing.

Lubricating composi-
tions

C10M Development of environmentally
friendly lubricants.

Production and refin-
ing of metals

C22B Includes environmental technolo-
gies in metallurgy.

Preparation of fibers
for spinning; Machines
for cotton processing

D01G Involves technologies for reducing
environmental impact in textile
manufacturing.

Fibrous raw materials
for paper-making

D21B Environmental impact reduction
in the paper industry.

Production of cellu-
lose by removing non-
cellulose constituents

D21C Cleaner technologies in cellulose
production.

Pulp compositions;
Impregnating materi-
als

D21H Includes environmentally friendly
additives in paper production.

Cables; Conductors;
Insulators

H01B Technologies for energy-efficient
and environmentally friendly
electrical systems.

Electric discharge
tubes; Gas-filled
discharge tubes

H01J Energy-efficient lighting technolo-
gies.
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Processes or means for
direct conversion of
chemical energy into
electrical energy

H01M Focus on batteries and fuel
cells, including environmentally
friendly energy storage.

Sterilization or dis-
infection techniques;
Deodorization

A61L Environmental impact reduction
in medical technology.

Crushing, pulverizing,
or disintegrating in
general

B02C Used in recycling and waste pro-
cessing.

Disposal of solid waste B09B Technologies for efficient and en-
vironmentally friendly waste dis-
posal.

Cracking hydrocarbon
oils; Production of liq-
uid hydrocarbon mix-
tures

C10G Cleaner processes in the oil indus-
try.

Reclamation of con-
taminated soil

B09C Environmental technologies for
soil remediation.

Signaling or calling
systems; Preventing,
indicating, or extin-
guishing fires

G08B Includes environmental monitor-
ing technologies.

Technologies for
Adaptation to Cli-
mate Change

Y02A

Climate Change Mit-
igation Technologies
related to Buildings

Y02B

Capture, Storage, Se-
questration or Dis-
posal of Greenhouse
Gases

Y02C

Climate Change Miti-
gation Technologies in
ICT

Y02D

Reduction of GHG
Emissions in Energy
Generation

Y02E
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Climate Change Mit-
igation Technologies
in the Production or
Processing of Goods

Y02P

Climate Change
Mitigation Tech-
nologies related to
Transportation

Y02T

Climate Change Mit-
igation Technologies
related to Wastewater
Treatment

Y02W

Smart grids Y04S
Fuel Cells H01M
Wind motors F03D
Propulsion Of
Electrically-Propelled
Vehicles

B60L

Tide or wave power
plants

E02B9/08

Devices for produc-
ing mechanical power
from geothermal en-
ergy

F03G4

Devices for produc-
ing mechanical power
from solar energy

F03G6

Ocean thermal energy
conversion

F03G7/05

Use of solar heat F24J2
Production or use of
heat, not derived from
combustion using
geothermal heat

F24J3/08,
F26B3/28

Clean Filters B01D46,
B01D50,
B01D35,
B01D39,
B01D41

Water Cleaning E02B15
Construction waste
managment

C04B18
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Submerged units
incorporating electric
generators or motors
characterized by using
wave or tide energy

F03B13/10-
26
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Table 14: Technological categories for grey patents

Description Codes
Idling devices F02M3/00, F02M3/01,

F02M3/02, F02M3/03,
F02M3/04, F02M3/05

Injection apparatus in combutions engines F02M39, F02M41, F02M2041,
F02M46, F02M43, F02M45,
F02M47, F02M49, F02M51,
F02M53, F02M55, F02M57,
F02M59, F02M, F02M61,
F02M63, F02M65, F02M67,
F02M69, F02M71

Adding non-fuel substances to fuel mix F02M23, F02M25
Electricity control and efficiency F02D/41, F02B47/06
Combustion technologies with mitigation po-
tential

Y02E20/12, Y02E20/14,
Y02E20/16, Y02E20/18,
Y02E20/30, Y02E20/32,
Y02E20/34

Table 15: Technological categories for dirty patents

Description Codes
Internal-combustion piston engines F02B
Controlling combustion engines F02D
Cylinders, pistons, or casings for combustion
engines; arragement of sealings in combus-
tion engines

F02F

Supplying combustion engines with com-
bustiles mixtures or constituents thereof

F02M

Starting of combustion engines F02N
Ignition (other than compression ignition)
for internal-combustion engines

F02P

Oil extraction and refining C10G
Fuel C10L1
Separating Plants for Oil-related B03B9/02, B03D2203/006
Gas-turbine plants F02C
Production of fuel gases by carburetting air
or other gases

C10J

Hydraulic engineering E02B
Steam engine plants (and similar) F01K
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Steam generation F22
Combustion apparatus or processes F23
Furnaces F27
Heat exchange in general F28
Lightning F21H
Conventional and unconventional oil and gas
exploratation and extraction

E21B B63B35/4413,
B63B2035/442, B63B2035/448,
B63B75/00, C09K8, C10L5/04,
E02B17/0, E02B2017/003,
E02B2017/004, E02B2017/005,
E02B2017/006,E21B
E02B2017/007, E02B2201,

Exploration and mining B03B9/0, B03B1,
B03D2203/006, B61D11, E21C

Gas conditioning F25J3/0209, F25J3/0214,
F25J3/0615, F25J3/061,

Solid Fuel conditioning C10F, C10L
Coal to gas processes C10B47, C10B49, C10B51,

C10B53, C10B55, C10B57,
C10J1, C10J3

Hydrogen fuel production C01B3/22, C01B3/3, C01B3/4
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Environmental Keywords:
Italian:
((riscaldamento AND (globale OR del pianeta)) OR (emissioni AND NOT (obbligazionarie
OR del tesoro)) OR energia OR energetic* OR ambiente OR ambiental* OR ecologic*
OR climatic* OR carbonio OR gas serra OR effetto serra OR anidride carbonica OR
CO2 OR metano OR CH4 OR inquinament* OR inquinante OR (ossid. AND di zolfo)
OR SOx OR diossido di zolfo OR biossido di zolfo OR anidride solforosa OR SO2 OR
ossido di azoto OR monossido di azoto OR NOx OR diossido di azoto OR biossido di
azoto OR NO2 OR (particelle AND (fini OR solide OR piccole)) OR (particolate AND
atmosferic* )) OR polveri sottili OR materiale particolato OR PM10 OR PM2.5 OR
ozono OR rinnovabil* OR idroelettric* OR idraulic* OR eolic* OR fotovoltaic* OR
emissioni OR biomass* OR (auto OR veicol* AND elettric*) OR ((auto OR motore OR
alimentazione) AND ibrid*) OR (solar* AND NOT (crema OR eritema OR sistema
OR trattamento OR ustione OR anno)))

French:
((energi* OR énergétiqu* OR environmenta*OR écologique* OR changement clima-
tique OR réchauffement climatique OR climatiq* OR pollution OR pollutan* OR car-
bone OR gaz à effet de serre OR dioxyde de carbone OR co2 OR ch4 OR méthane OR
oxyde de soufre OR so2 OR dioxyde de soufre OR sox OR oxyde d azote OR dyoxyde
d azote OR particule fines OR PM2.5 OR PM10 OR ozone OR éolien* OR solair*
AND NOT (crème OR système) OR photovoltaïque* OR hydraulique* OR biomasse
OR (énergies renouvelables OR énergie renouvelable) OR (voitures OR voiture AND
(électriques OR électrique OR hybride*))))

Spanish:
((energ* OR energétic* OR medio ambient* OR ecológic* OR cambio climático OR
calentamiento global OR climatic* OR contaminación OR contaminante* OR polu-
ción OR carbono OR gases de efecto invernadero OR dióxido de carbono OR CO2 OR
metano OR CH4 OR óxido de azufre OR SO2 OR dióxido de azufre OR SOx OR óxido
de nitrógeno OR NOx OR dióxido de nitrógeno OR (partículas AND (finas OR en
suspensión)) OR PM2.5 OR PM10 OR ozono OR eólic* OR (tecnología* OR panel*
OR placa* OR central* AND solar*) OR fotovoltaic* OR (energía AND (hidráulica
OR hidroeléctric*)) OR biomasa OR (energías AND (renovables OR verdes OR alter-
nativas OR limpias)) OR (auto* OR coche* AND (eléctrico* OR híbrido*))))

German:
((klima* AND NOT (Geschäftsklima OR politisches OR wirtschaftliches OR Wirtschafts
OR Regulierung OR regulatorisches OR Rechts OR rechtliches OR gesellschaftliches
OR Gesellschafts)) OR Energiewende OR (Erneuerbare AND Energien AND Gesetz)
OR EEG.Einspeisevergütung OR EEG.Umlage OR Klimapolitik OR Energiepolitik
OR Umweltpolitik OR Lufteinhaltepolitik OR Luftreinhalteplan OR Umwelt OR ökol-
ogisch OR klimawandel OR Erderwärmung OR globale Erwärmung OR Umwelt* OR
Energie* OR Kohlenstoff* OR Treibhausgas* OR THG* OR Kohlendioxid* OR CO2*
OR Methan* OR CH4* OR Schadstoff* OR Umweltverschmutzung* OR Luftver-
schmutzung* OR verschmutz* OR schwefeloxid* OR SOx OR Schwefeldioxid* OR
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SO2* OR Stickoxid* OR NOx OR Stickstoffdioxid* OR NO2* OR (Partikel* AND
(Fein OR Feinpartikel OR Feinstaub)) OR PM2.5 OR PM10* OR Ozon* OR erneuer-
bar* OR Hydro* OR Windenergie* OR Windpark* OR Windkraftanlage* OR Pho-
tovoltaik* OR PV OR Solar* OR Biomasse* OR (Elektrofahrzeug* OR Elektroauto*
OR E-auto*) OR (Hybridfahrzeug* OR Hybridauto*)))

Policy Keywords:
Italian:
((politica AND NOT monetaria) OR regolament* OR legislazion* OR legge OR tasse
OR canon* OR (standard AND NOT (& OR and OR e OR poors OR poor’s)) OR
certificat* OR certificazion* OR sussidi OR sussidio OR sovvenzion* OR ETS OR Sis-
tema ES OR feed-in-tariff* OR conto energia OR (scambio AND di quote) OR regime
di scambio OR sistema di scambio OR decarbonizzazione OR effetto serra OR cap and
trade OR mercato dei diritti di emissione OR (mercato AND (dell OR di AND emis-
sion*)) OR (etichett* AND (ambiental* OR ecologic*)) OR eco-etichett* OR eco-label
OR normative OR normativa)

French:
((politiq AND NOT monétaire) OR réglementation* OR lois OR loi OR redevance*
OR tax* OR impôt* OR norme* OR tarification* OR tarif de rachat OR certificat*
OR subvention* OR ETS OR (marché AND d emissions) OR droit* à polluer OR
système d échange OR SEQE)

Spanish:
((política AND NOT monetaria) OR regulación* OR ley OR leyes OR impuesto* OR
estándar* OR tarifa de alimentación OR certificado* OR subsidio* OR (mercado AND
de emision*) OR derecho* OR contaminar OR sistema de comercio OR ETS)

German:
((politik AND NOT geld) OR richtlinie* OR reform* OR regulierung* OR vorschrift*
OR gesetz* OR gebühr* OR abgabe* OR maßnahme* OR steuer* OR standard* OR
zertifikat* OR subvention* OR preisgestaltung OR emissionshandel OR ETS OR ein-
speisetarif* OR einspeisevergütung* OR handelssystem* OR cap and trade OR (label
OR kennzeichen AND umweltzeichen OR umweltabzeichen) OR umlage)
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Uncertainty Keywords:
Italian:
(può OR potrebbe OR probabile OR probabilmente OR possibile OR possibilmente
OR potenziale OR potenzialmente OR immaginare OR assumere OR assunzione OR
credere OR sostenere OR stimare OR ipotesi OR ipotetico OR speculare OR specu-
lazione OR sospettare OR supporre OR aspettarsi OR dubbio OR dubitare OR dub-
bioso OR incerto OR incertezza OR sconosciuto OR non familiare OR discutibile OR
discutibilmente OR forse OR sembrare OR apparentemente OR improbabile OR nes-
sun indizio OR nessuna prova OR nessuna idea)

French:
(peut OR pourrait OR probable OR probablement OR possible OR possiblement OR
potentiel OR potentiellement OR imaginer OR supposer OR supposition OR croire OR
prétendre OR estimer OR hypothèse OR hypothétique OR spéculer OR spéculation
OR suspecter OR s’attendre à OR doute OR douter OR douteux OR incertain OR
incertitude OR inconnu OR non familier OR discutable OR discutablement OR peut-
être OR sembler OR apparemment OR improbable OR aucun indice OR aucune preuve
OR aucune idée)

Spanish:
(puede OR podría OR probable OR probablemente OR posible OR posiblemente OR
potencial OR potencialmente OR imaginar OR asumir OR suposición OR creer OR
sostener OR estimar OR hipótesis OR hipotético OR especular OR especulación OR
sospechar OR suponer OR esperar OR duda OR dudar OR dudoso OR incierto OR
incertidumbre OR desconocido OR no familiar OR discutible OR discutiblemente OR
quizás OR parecer OR aparentemente OR improbable OR ningún indicio OR ninguna
prueba OR ninguna idea)

German:
(kann OR könnte OR wahrscheinlich OR möglich OR möglicherweise OR potenziell
OR potentiell OR vorstellen OR annehmen OR Annahme OR glauben OR behaupten
OR schätzen OR Hypothese OR hypothetisch OR spekulieren OR Spekulation OR
verdächtigen OR vermuten OR erwarten OR Zweifel OR zweifeln OR zweifelhaft OR
unsicher OR Unsicherheit OR unbekannt OR nicht vertraut OR fragwürdig OR fraglich
OR vielleicht OR scheinen OR anscheinend OR unwahrscheinlich OR kein Anzeichen
OR kein Beweis OR keine Ahnung)
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Sample titles of articles flagged as CPU plus:

• L’Europa e la sfida dell’energia

• Il futuro dei Verdi

• Europa è ora di riprendere il cammino

• «Sui rigassificatori intervenga il governo» Scaroni: mi preoccupa il prossimo in-
verno, ma ci stiamo attrezzando perevitare il peggio

• Bersani «Avanti con le liberalizzazioni di tv ed energia I tagli per risanare il
bilancio non si spalmano»

• Rivoluzione energetica contro la crisi

• Rifiuti, Amaie Energia accetta la sfida

• Ue, l’Italia spinge sull’Accordo commerciale per i beni ambientali

• “La infraestructura verde es un símbolo para el nuevo modelo de ciudades”

• La energía solar sale a flote

• «En 10 años ya no podremos invertir el calentamiento»

• «Hay que proteger el paisaje y a los paisanos»

• Blair asegura que ignorar el cambio climático tendrá consecuencias desastrosas

• Lo hemos hecho posible. Ahora tú decides

• «Abrir los mercados no es el nirvana»

• Es hora de tomar en serio el cambio climático

• 2013: le retour en force de l’Europe?

• Une étude de lAPPA précise limpact de la pollution sur la mortalité et la mor-
bidité

• Mis en œuvre avec pragmatisme, un “Green Deal” européen a le potentiel de
remodeler l’économie du continent

• L’éolien français manque de souffle

• Nucléaire, éolien... Que proposent Emmanuel Macron et Marine Le Pen en
matière dénergie?

• Le contre-modèle américain

• Aérien: la Commission européenne planche sur une taxe kérosène
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Sample titles of articles flagged as CPU minus:

• Tutti i rischi dell ambientalismo

• «Meno tasse, meno regole, più sicurezza» Colloquio con Bush, oggi l’insediamento
alla Casa Bianca

• Enigma Trump: benvenuti nell’era dell’incertezza

• La fiducia nell’Opec dipende da Mosca

• Economia italiana stabile ma pesa l’incertezza politica europea

• Che cosa succede se gli Stati Uniti abbandonano l’accordo sul clima

• Allarme smog nel giorno dell afa

• La OMC y el futuro del medio ambiente

• Bush propone el mayor aumento del gasto militar desde la era de Reagan

• Un choque de titanes del petróleo en el peor momento posible

• EE UU y China suavizan sus controles medioambientales por la crisis del coron-
avirus

• Riesgos de catástrofe global

• La política energética de López Obrador provoca incertidumbre en el sector de
las renovables

• Écologie et amateurisme

• Comment les Verts ont disparu dune campagne pourtant marquée par lécologie

• Lécologie nest pas morte, cest lécologie politique qui nexiste plus

• Le protocole de Kyoto est moribond, achevons-le !

• Les climato-sceptiques à lassaut du Giec

• Il y a un vrai problème autour de la capacité des Etats en développement à
réduire la déforestation

• «La compensation carbone ne doit pas servir à se dédouaner»

• «Les gilets jaunes, symptôme dun peuple qui refuse un monde en perpétuelle
accélération»

• Taxe carbone: pourquoi il ne faut plus laugmenter, et même la diminuer!,

• «Greta Thunberg, icône dun écologisme naïf»
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